Horm Metab Res 2007; 39(12): 915-918
DOI: 10.1055/s-2007-993156
Humans, Clinical

© Georg Thieme Verlag KG Stuttgart · New York

Effects of Spironolactone on Glucose Transport and Interleukin-6 Secretion in Adipose Cells of Women

A. Corbould 1
  • 1Prince Henry's Institute of Medical Research, Clayton, VIC, Australia
Weitere Informationen

Publikationsverlauf

received 18.12.2006

accepted 18.06.2007

Publikationsdatum:
13. Dezember 2007 (online)

Abstract

Adipose tissue inflammation and insulin resistance are central to the pathogenesis of the metabolic syndrome. Spironolactone, an antagonist of mineralocorticoid receptor, glucocorticoid receptor and androgen receptor, and agonist of progesterone receptor, has anti-inflammatory activity. Blockade of the renin-angiotensin-aldosterone system has been shown to improve glucose metabolism. We have investigated whether spironolactone has direct effects on glucose uptake and interleukin-6 secretion in human adipocytes. Spironolactone, but not its active metabolite canrenoic acid, significantly increased basal and insulin-stimulated glucose uptake in cultured in vitro-differentiated adipocytes of women, without affecting insulin sensitivity. The effect was not due to changes in abundance of glucose transporters 1 or 4 or in degree of cell differentiation. Spironolactone, but not canrenoic acid, significantly reduced basal interleukin-6 secretion by cultured stromal-vascular cells. These effects of spironolactone were not mediated by ligand-dependent antagonism of the mineralocorticoid, glucocorticoid, or androgen receptors. Spironolactone may have a novel role in increasing glucose uptake into adipose cells and attenuating adipose tissue inflammation, with implications for management of metabolic syndrome.

References

  • 1 Garthwaite SM, MacMahon EG. The evolution of aldosterone antagonists.  Mol Cell Endocrinol. 2004;  217 27-31
  • 2 Pitt B, Zannad F, Remme W, Cody R, Castaigne A, Perez A, Palensky J, Wittes J. The effect of spironolactone on morbidity and mortality in patients with severe heart failure.  N Engl J Med. 1999;  341 709-715
  • 3 Hansen PR, Rieneck K, Bendtzen K. Spironolactone inhibits production of proinflammatory cytokines by human mononuclear cells.  Immunol Lett. 2004;  91 87-91
  • 4 Hofbauer R, Frass M, Pasching E, Gmeiner B, Kaye AD, Kapiotis S. Furosemide and spironolactone reduce transmigration of leukocytes through endothelial cell monolayers.  J Toxicol Environ Health A. 2002;  65 685-693
  • 5 Farquharson CAJ, Struthers AD. Spironolactone increases nitric oxide bioactivity, improves endothelial vasodilator dysfunction, and suppresses vascular angiotensin I/angiotensin II conversion in patients with chronic heart failure.  Circulation. 2000;  101 594-597
  • 6 Klauber N, Anand-Apte B, D'Amato RJ. New activity of spironolactone. Inhibition of angiogenesis in vitro and in vivo.  Circulation. 1996;  94 2566-2571
  • 7 Bajusz E, Jasmin G. Effect of aldactone, an antimineralocorticoid steroid spironolactone, on inflammation.  Rev Canad Biol. 1961;  20 829-832
  • 8 Sjoholm A, Nystrom T. Inflammation and the etiology of type 2 diabetes.  Diabetes Metab Res Rev. 2006;  22 4-10
  • 9 Abel ED, Peroni O, Kim JK, Kim Y-B, Boss O, Hadro E, Minnemann T, Shulman GI, Kahn BB. Adipose-selective targeting of the GLUT4 gene impairs insulin action in muscle and liver.  Nature. 2001;  409 729-733
  • 10 Karim A. Spironolactone: disposition, metabolism, pharmacodynamics and bioavailability.  Drug Metab Rev. 1978;  8 151-188
  • 11 Inglefinger JR, Solomon CG. Angiotensin-converting-enzyme inhibitors for impaired glucose tolerance-is there still hope?.  N Engl J Med. 2006;  355 1608-1610
  • 12 Ramsey LE, Yeo WW, Jackson PR. Diabetes, impaired glucose tolerance and insulin resistance with diuretics.  Eur Heart J. 1992;  13 ((Supp G)) 68-71
  • 13 Janke J, Engeli S, Gorzelniak K, Luft FC, Sharma AM. Mature adipocytes inhibit in vitro differentiation of human preadipocytes via angiotensin type 1 receptors.  Diabetes. 2002;  51 1699-1707
  • 14 Schupp M, Janke J, Clasen R, Unger T, Kintscher U. Angiotensin type 1 receptor blockers induce peroxisome proliferator-activated receptor-γ activity.  Circulation. 2004;  109 2054-2057
  • 15 Clyne CD, Speed CJ, Zhou J, Simpson ER. Liver receptor homologue-1 (LRH-1) regulated expression of aromatase in preadipocytes.  J Biol Chem. 2002;  277 20591-20597
  • 16 Ciaraldi TP, Abrams L, Nikoulina S, Mudaliar S, Henry RR. Glucose transport in cultured human skeletal muscle cells. Regulation by insulin and glucose in nondiabetic and non-insulin-dependent diabetes mellitus subjects.  J Clin Invest. 1995;  96 2820-2827
  • 17 Carlson CJ, Koterski S, Sciotti RJ, Poccard GB, Rondinone CM. Enhanced basal activation of mitogen-activated protein kinases in adipocytes from type 2 diabetes. Potential role of p38 in the downregulation of GLUT4 expression.  Diabetes. 2003;  52 634-641
  • 18 Singh R, Artaza JN, Taylor WE, Braga M, Yuan X, Gonzalez-Cadavid NF, Bhasin S. Testosterone inhibits adipogenic differentiation in 3T3-L1 cells: nuclear translocation of androgen receptor complex with β-catenin and T-cell factor 4 may bypass canonical Wnt signaling to down-regulate adipogenic transcription factors.  Endocrinology. 2006;  147 141-154
  • 19 Corbould A. Chronic testosterone treatment induces selective insulin resistance in subcutaneous adipocytes of women.  J Endocrinol. 2007;  192 585-594
  • 20 Wiernsperger NF. Is non-insulin dependent glucose transport a therapeutic alternative?. Part 1: physiology, mechanisms and role of non insulin-dependent glucose uptake in type 2 diabetes.  Diabetes Metab. 2005;  31 415-426
  • 21 Abbud W, Habinowski S, Zhang JZ, Kendrew J, Elkairi FS, Kemp BE, Witters LA, Ismail-Beigi F. Stimulation of AMP-activated protein kinase (AMPK) is associated with enhancement of GLUT1-mediated glucose transport.  Arch Biochem Biophys. 2000;  380 347-352
  • 22 Smith U. Impaired (‘diabetic’) insulin signaling and action occur in fat cells long before glucose intolerance-is insulin resistance initiated in the adipose tissue?.  Int J Obes. 2002;  26 897-904
  • 23 Pedersen SB, Fuglsig S, Sjogren P, Richelsen B. Identification of steroid receptors in human adipose tissue.  Eur J Clin Invest. 1996;  26 1051-1056
  • 24 Caprio M, Feve B, Claes A, Viengchareun S, Lombes M, Zennaro M-C. Pivotal role of the mineralocorticoid receptor in corticosteroid-induced adipogenesis. 88th Annual Meeting of The Endocrine Society, Boston 2006 Abstract OR4-1
  • 25 O'Brien SN, Welter BH, Mantzke KA, Price TM. Identification of progesterone receptor in human subcutaneous adipose tissue.  J Clin Endocrinol Metab. 1998;  83 509-513
  • 26 Fried SK, Bunkin DA, Greenberg AS. Omental and subcutaneous adipose tissues of obese subjects release interleukin-6: depot difference and regulation by glucocorticoid.  J Clin Endocrinol Metab. 1998;  83 847-850
  • 27 Yudkin JS, Kumari M, Humphries SE, Mohamed-Ali V. Inflammation, obesity, stress and coronary heart disease: is interleukin-6 the link?.  Atherosclerosis. 2000;  148 209-214
  • 28 Funder JW. RALES, EPHESUS and redox.  J Steroid Biochem Mol Biol. 2005;  93 121-125

Correspondence

A. CorbouldMBBS Hons, PhD, FRACP 

Prince Henry's Institute of Medical Research

Block E, Level 4

Monash Medical Centre

Clayton Road

Clayton

3168 VIC

Australia

Telefon: +61/395/94 30 07

Fax: +61/395/94 61 25

eMail: anne.corbould@princehenrys.org

eMail: acorbould@yahoo.com