Klin Monbl Augenheilkd 2008; 225(4): 259-268
DOI: 10.1055/s-2008-1027202
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Grundlagen und klinische Anwendung der Lasertherapie an der Netzhaut

Basic Principles and Clinical Application of Retinal Laser TherapyC. Framme1 , J. Roider2 , R. Brinkmann3 , R. Birngruber3 , V.-P Gabel4
  • 1Klinik und Poliklinik für Augenheilkunde, Universität Regensburg
  • 2Klinik für Augenheilkunde, Universität Kiel
  • 3Institut für Biomedizinische Optik, Universität zu Lübeck
  • 4Augenheilkunde, Maximilians-Augenklinik e. V. Nürnberg
Weitere Informationen

Publikationsverlauf

Eingegangen: 14.11.2007

Angenommen: 22.1.2008

Publikationsdatum:
09. April 2008 (online)

Zusammenfassung

Die wissenschaftlichen Grundlagen der Photokoagulation am Augenhintergrund wurden in den 70er- und 80er-Jahren ausgiebig von verschiedenen Arbeitsgruppen untersucht. Die grundlegenden Prozesse konnten dabei abgeklärt werden und daraus klinische Konsequenzen gezogen werden. Diese Arbeit gibt eine Übersicht über die physikalischen Grundlagen der Laser-Gewebe-Interaktion an der Netzhaut sowie über die zugrunde liegenden Prinzipien bei der Behandlung einzelner Netzhauterkrankungen. Eingegangen wird dabei auf den Einfluss der verschiedenen Laserparameter wie Wellenlänge, Spotgröße, Pulsdauer und die Laserleistung auf den Gewebeschaden. Weiterhin werden die unterschiedlichen biologischen Reaktionen des Gewebes auf die Laserbehandlung wie z. B. bei Retinopexien oder Makulaerkrankungen bzw. bei der diabetischen Retinopathie dargestellt. Besondere Behandlungsstrategien wie die Selektive Lasertherapie des RPE (SRT) oder die Transpupilläre Thermotherapie (TTT) werden vorgestellt und diskutiert.

Abstract

The scientific background of laser photocoagulation of the ocular fundus was studied extensively by several investigators in the 1970 s and 1980 s. The basic principles were succesfully resolved during that time and clinical consequences for proper application of the laser photocoagulation for various diseases were deduced. The present paper gives an overview about the physical basics of laser-tissue interactions during and after retinal laser treatment and the particular laser strategies in the treatment of different retinal diseases. Thus, it addresses the issue of the impact on tissue of laser parameters as wavelength, spot size, pulse duration and laser power. Additionally, the different biological tissue reactions after laser treatment are presented, such as, e. g., for retinopexia or macular treatments as well as for diabetic retinopathies. Specific laser strategies such as the selective laser treatment of the RPE (SRT) or the transpupillary thermotherapy (TTT) are presented and discussed.

Literatur

  • 1 Benner J D, Ahuja R M, Butler J W. Macular infarction after transpupillary thermotherapy for subfoveal neovascularization in age-related macular degeneration.  Am J Ophthalmol. 2002;  134 765-768
  • 2 Birngruber R. Thermal Modeling in Biological Tissues. Hillenkamp F, Pratesi R, Sacchi CA Lasers in Biology and Medicine New York; Plenum Press 1980
  • 3 Birngruber R, Weinberg W, Gabel V P. Der Einfluss der Expositionsparameter auf die Schadensausdehnung bei der Netzhautkoagulation, dargestellt anhand eines thermischen Modells.  Ber Dtsch Ophthal Ges. 1981;  78 599-602
  • 4 BVOCG; Branch vein occlusion study group . Argon laser scatter photocoagulation for prevention of neovascularization and vitreous hemorrhage in branch vein occlusion.  Arch Ophthalmol. 1986;  104 34-41
  • 5 Brinkmann R, Hüttmann G, Rögener J. et al . Origin of retinal pigment epithelium cell damage by pulsed laser irradiance in the nanosecond to microsecond time regimen.  Lasers Surg Med. 2000;  27 (5) 451-464
  • 6 Connolly B P, Regillo C D, Eagle R C Jr. et al . The histopathologic effects of transpupillary thermotherapy in human eyes.  Ophthalmology. 2003;  110 415-420
  • 7 CNPTRG; Choroidal Neovascularization Prevention Trail Research Group . Laser treatment in eyes with with large drusen: short-term effects seen in a pilot randomized clinical trial.  Ophthalmology. 1998;  105 11-23
  • 8 CVOSG; The Central vein occlusion study Group . Evaluation of Grid pattern photocoagulation for macular edema in central vein occusion: The central vein occlusion study group M report.  Ophthalmology. 1995;  102 1425-1433
  • 9 CVOSG; The Central vein occlusion study Group . A randomized clinical of early panretinal photocoagulation for ischaemic central vein occlusion: The central vein occlusion study group N report.  Ophthalmology. 1995;  102 1434-1444
  • 10 Del Priore L V, Glaser B M, Quigley H A. et al . Response of pig retinal pigment epithelium to laser photocoagulation in organ culture.  Arch Ophthalmol. 1989;  107 119-122
  • 11 DRSRG . Photocoagulation treatment of proliferative diabetic retinopathy: a second report of diabetic retinopathy study findings.  Ophthalmology. 1978;  85 82-105
  • 12 Elsner H, Pörksen E, Klatt C. et al . Selective Retina Therapy (SRT) in patients with central serous chorioretinopathy (CSC).  Graefes Arch Clin Exp Ophthalmol. 2006;  244 (12) 1638-1645
  • 13 ETDRS; Early Treatment Diabetic Retinopathy Study Research Group . Early photocoagulation for diabtic retinopathy. ETDRS report No 9.  Ophthalmology. 1991;  98 766-785
  • 14 Finkelstein D. Argon laser photocoagulation for macular edema in branch vein occlusion.  Ophthalmology. 1986;  93 975-977
  • 15 Framme C, Brinkmann R, Birngruber R. et al . Autofluorescence imaging after selective RPE laser treatment in macular diseases and clinical outcome: a pilot study.  Br J Ophthalmol. 2002;  86 (10) 1099-1106
  • 16 Framme C, Kobuch K, Eckert E. et al . RPE in the perfusion culture and its response to laser application - preliminary report.  Ophthalmologica. 2002;  216 (5) 320-328
  • 17 Framme C, Schüle G, Roider J. et al . Influence of pulse duration and pulse number in selective RPE laser treatment.  Las Surg Med. 2004;  34 (3) 206-215
  • 18 Gabel V P, Birngruber R, Hillenkamp F. Visible and near infrared light absorption in pigment epithelium and choroid. Shimizu K, Oosterhuis JA Intern. Congr. Series No. 450, XXIII Concilium Ophthalmologicum, Kyoto, 1978 Amsterdam, Oxford; Excerpta Medica 1978: 658-662
  • 19 Gabel V P, Birngruber R. Klinische Folgerungen aus der Xanthophylleinlagerung in der Netzhautmitte.  Ber Dtsch Ophthal Ges. 1979;  76 475-478
  • 20 Greite J H, Birngruber R. Low intensity argon laser coagulation in central serous retinopathy (CSR).  Ophthalmologica. 1975;  171 214-218
  • 21 Guyer D R, Yanuzzi L A, Slakter J S. Digital indocyanine green angiography of central serous chorioretinopathy.  Arch Ophthalmol. 1994;  112 1057-1062
  • 22 Haas A, Feigl B, Weger M. Transpupilläre Thermotherapie bei exsudativer altersabhängiger Makuladegeneration.  Ophthalmologe. 2003;  100 111-114
  • 23 Körner F. Diabetische Retinopathie und Photokoagulation. Bücherei des Augenarztes, Bd. 114 Enke 1988: 11
  • 24 Lorenz B, Ganson N, Stein H P. et al . CW-Nd:YAG-Laserphotokoagulation am Kaninchenfundus - Effekt auf Aderhaut und Sklera im Vergleich mit Argonlaserphotokoagulation.  Fortschr Ophthalmol. 1986;  83 436-440
  • 25 Mainster M. et al . Transpupillary thermotherapy for age related degeneration: long-pulse photocoagulation, apoptosis and heat shock proteins.  Ophthalmic Surg Lasers. 2000;  31 359-373
  • 26 Marshall J, Bird A C. A comparative histopathological study of aron and krypton laser irradiations of the human retina.  Brit J Ophthal. 1979;  63 657-668
  • 27 Marshall J, Clover G, Rothery S. Some new findings on retinal irradiation by krypton and argon lasers.  Doc Ophthalmol. 1984;  36 21-37
  • 28 Oosterhuis J A, Journee-de Korver H G, Kakebeeke-Kemme H M. et al . Transpupillary thermotherapy in choroidal melanomas.  Arch Ophthalmol. 1995;  113 315-321
  • 29 Patz A. A guide to argon laser photocoagulation.  Survey Ophthalmol. 1972;  16 249
  • 30 Rassow B. Zur Festigkeit retinaler Narben. Int. Symp. Dtsch. Ophthalmol. Ges. „Wundheilungen des Auges und ihre Komplikationen” Tübingen; 1979
  • 31 Reichel E. et al . Transthermal thermotherapy of occult subfoveal choroidal neovascularization in patients with age-realted macula degeneration.  Ophthalmology. 1999;  106 1908-1914
  • 32 Roider J, Brinkmann R, Wirbelauer C. et al . Retinal sparing by selective retinal pigment epithelial photocoagulation.  Arch Opthalmol. 1999;  17 1028-1034
  • 33 Roider J, Brinkmann R, Wirbelauer C. et al . Subthreshold (RPE) photocoagulation in macular diseases - a pilot study.  Br J Ophthalmology. 2000;  84 40-47
  • 34 Schüle G, Elsner H, Framme C. et al . Optoacoustic real-time dosimetry for selective retina treatment.  J Biomed Opt. 2005;  10 (6) 064 022,1-11
  • 35 Stefansson E. The therapeutic effects of retinal laser treatment and vitrectomy. A theory based on oxygen and vascular physiology.  Acta Ophthalmol Scand. 2001;  79 (5) 435-440
  • 36 Wallow I HL, Tso M OM. Failure of formation of chorioretinal adhesions following xenon arc photocoagulation.  Mod Probl Ophthalmol. 1974;  12 189
  • 37 Wallow I H. Repair of the pigment epithelial barrier following photocoagulation.  Arch Ophthalmol. 1984;  102 126-135
  • 38 Wetzig P C, Worlton J T. Treatment of diabetic retinopthy by light coagulation.  Br J Ophthalmol. 1963;  47 539

PD Dr. Carsten Framme

Klinik und Poliklinik für Augenheilkunde, Universität Regensburg

Franz-Josef-Strauß-Allee 11

93042 Regensburg

Telefon: ++ 49/9 41/9 44 92 04

Fax: ++ 49/9 41/9 44 92 83

eMail: carsten.framme@klinik.uni-regensburg.de