Klin Monbl Augenheilkd 2008; 225(7): 623-628
DOI: 10.1055/s-2008-1027513
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

In-vitro-Untersuchungen zum Wirkungsmechanismus von VEGF und seinen Inhibitoren

In Vitro Studies on the Mechanism of Action of VEGF and its InhibitorsH. L. Deissler1 , G. E. Lang1
  • 1Augenklinik, Universitätsklinikum Ulm
Further Information

Publication History

Eingegangen: 22.4.2008

Angenommen: 6.5.2008

Publication Date:
18 July 2008 (online)

Zusammenfassung

Die Expression des Wachstumsfaktors VEGF und die durch ihn aktivierbaren Signaltransduktionswege sind bei der diabetischen Retinopathie dereguliert. Durch VEGF stimulierte Proliferation und Migration von Endothelzellen sowie die durch diesen Wachstumsfaktor erhöhte Permeabilität der Endothelzellen ist vorwiegend Folge seiner Bindung an den für diesen Liganden spezifischen VEGF-Rezeptor 2. Für die durch VEGF165 induzierte Störung der Blut-Retina-Schranke ist unter Umständen die Delokalisation von Proteinen, die an der Bildung der „tight-junctions” in retinalen Endothelzellen beteiligt sind, verantwortlich. VEGF-Inhibitoren wie das VEGF-Aptamer (modifiziertes RNA-Oligonukleotid; Pegaptanib) oder spezifische Antikörper bzw. abgeleitete Fab-Fragmente (Bevacizumab, Ranibizumab), die die Interaktion von VEGF mit seinem Rezeptor beeinflussen, gelten daher als vielversprechende neue Therapeutika zur Behandlung der diabetischen Retinopathie und der altersabhängigen Makuladegeneration. In-vitro-Studien mit retinalen Endothelzellen können auch für die therapeutische Anwendung wertvolle Hinweise auf die Mechanismen der Wirkung von VEGF und seinen Inhibitoren liefern: Dabei untersucht man unter anderem den Einfluss verschiedener VEGF-Isoformen, ggf. in Kombination mit VEGF-Inhibitoren, auf Proliferation und Migration mikrovaskulärer Endothelzellen retinalen Ursprungs, sowie die Veränderung von tight-junctions nach Einwirkung von VEGF165 und geeigneten Inhibitoren. Die in diesem Artikel neben einer Literaturübersicht enthaltenen Primärdaten stammen größtenteils aus eigenen Untersuchungen.

Abstract

VEGF expresssion and signalling are deregulated in diabetic retinopathy. Cellular processes like migration and proliferation as well as control of the permeability of the endothelium by VEGF are regulated as a consequence of its binding to the VEGF receptor 2. Proteins forming tight junctions between microvascular endothelial cells of the retina are delocated to the cytoplasm after treatment with VEGF165, likely leading to the breakdown of the blood-retina barrier. VEGF-inhibitors such as a VEGF-aptamer (modified RNA-oligonucleotide; pegaptanib) or specific antibodies/antibody fragments (bevacizumab, ranibzumab) which directly interfere with the interaction of VEGF with its receptors are considered to be promising novel therapeutics to treat diabetic retinopathy and age-related macular degeneration. In vitro studies using microvascular endothelial cells will help to clarify the mechanisms of action of VEGF and its inhibitors. In particular, the influence of VEGF isoforms and the inhibitor ranibizumab on the proliferation and migration of bovine retinal microvascular endothelial cells was studied, as well as the rearrangement of tight-junction proteins after treatment of the cells with VEGF165 and specific inhibitors. In addition to a review of recent publications in the field, primary data from our own studies are presented in this article.

Literatur

  • 1 Aiello L P, Avery R L, Arrigg P G. et al . Vascular endothelial growth factor in ocular fluid of patients with diabetic retinopathy and other retinal disorders.  NEJM. 1994;  331 1480-1487
  • 2 Antonetti D A, Barber A J, Hollinger L A. et al . Vascular endothelial growth factor induces rapid phosphorylation of tight junction proteins occludin and zonula occludens 1.  J Biol Chem. 1999;  274 23 463-23 467
  • 3 Bazzoni G. Endothelial tight junctions: permeable barriers of the vessel wall.  Thromb Haemost. 2006;  95 36-42
  • 4 Behzadian M A, Windsor L J, Ghaly N. et al . VEGF-induced paracellular permeability in cultured endothelial cells involves urokinase and its receptor.  FASEB J. 2003;  17 752-754
  • 5 Boulton M, Foreman D, Williams G. et al . VEGF localisation in diabetic retinopathy.  Br J Ophthalmol. 1998;  82 561-568
  • 6 Caldwell R B, Bartoli M, Behzadian M A. et al . Vascular endothelial growth factor and diabetic retinopathy: pathophysiological mechanisms and treatment perspectives.  Diabetes Metab Res Rev. 2003;  19 442-455
  • 7 Caldwell R B, Bartoli M, Behzadian M A. et al . Vascular endothelial growth factor and diabetic retinopathy: role of oxidative stress.  Curr Drug Targets. 2005;  6 511-524
  • 8 Deissler H, Deissler H, Lang G K. et al . Generation and characterization of iBREC: novel hTERT-immortalized bovine retinal endothelial cells.  Int J Mol Med. 2005;  16 65-70
  • 9 Deissler H, Deissler H, Lang G K. et al . TGFβ induces transdifferentiation of iBREC to &alphaSMA-expressing cells.  Int J Mol Med. 2006;  18 577-582
  • 10 Deissler H, Deissler H, Lang S. et al . VEGF-induced effects on proliferation, migration and tight junctions are restored by ranibizumab (Lucentis®) in microvascular retinal endothelial cells.  Br J Ophthalmol. 2008;  im Druck
  • 11 Ferrara N. Vascular endothelial growth factor: basic science and clinical progress.  Endocr Rev. 2004;  25 581-611
  • 12 Ferrara N, Damico L, Shams N. et al . Development of ranibizumab, an anti-vascular endothelial growth factor antigen binding fragment, as therapy for neovascular age-related macular degeneration.  Retina. 2006;  26 859-870
  • 13 Hammes H -P, Lin J, Renner O. et al . Pericytes and the pathogenesis of diabetic retinopathy.  Diabetes. 2002;  51 3107-3112
  • 14 Harhaj N S, Felinski E A, Wolpert E B. et al . VEGF activation of protein kinase C stimulates occludin phosphorylation and contributes to endothelial permeability.  Invest Ophthalmol Vis Sci. 2006;  47 5106-5115
  • 15 Hughes J M, Brink A, Witmer A M. et al . Vascular leucocyte adhesion molecules unaltered in the human retina in diabetes.  Br J Ophthalmol. 2004;  88 566-572
  • 16 Joussen A M, Poulaki V, Le M L. et al . A central role for inflammation in the pathogenesis of diabetic retinopathy.  FASEB J. 2004;  18 1450-1452
  • 17 Kowanetz M, Ferrara N. Vascular endothelial growth factor signaling pathways: therapeutic perspective.  Clin Cancer Res. 2006;  12 5018-5022
  • 18 Lowe J, Araujo J, Yang J. et al . Ranibizumab inhibits multiple forms of biologically active vascular endothelial growth factor in vitro and in vivo.  Exp Eye Res. 2007;  85 425-430
  • 19 Lutty G A, Mathews M K, Merges C. et al . Adenosine stimulates canine retinal microvascular endothelial cell migration and tube formation.  Curr Eye Res. 1998;  17 594-607
  • 20 Malik R A, Li C, Aziz W. et al . Elevated plasma CD 105 and vitreous VEGF levels in diabetic retinopathy.  J Cell Mol Med. 2005;  9 692-697
  • 21 McLeod D S, Lefer D J, Merges C. et al . Enhanced expression of intracellular adhesion molecule-1 and P-selectin in the diabetic human retina and choroid.  Am J Pathol. 1995;  147 642-653
  • 22 Pan Q, Chathery Y, Wu Y. et al . Neuropilin-1 binds to VEGF121 and regulates endothelial cell migration and sprouting.  J Biol Chem. 2007;  282 24 049-24 056
  • 23 Peters S, Julien S, Heiduschka P. et al . Antipermeability and antiproliferative effects of standard and frozen bevacizumab on choroidal endothelial cells.  Br J Ophthalmol. 2007;  91 827-831
  • 24 Qaum T, Xu Q, Joussen A M. et al . VEGF-initiated blood-retinal barrier breakdown in early diabetes.  Invest Ophthalmol Vis Sci. 2001;  42 2408-2413
  • 25 Raja T T, Grammas P. VEGF and VEGF receptor levels in retinal and brain-derived endlthelial cells.  Bioch Biophys Res Commun. 2002;  293 710-713
  • 26 Sakakibara A, Furuse M, Saitou M. et al . Possible involvement of phosphorylation of occludin in tight junction formation.  J Cell Biol. 1997;  137 1393-1401
  • 27 Spitzer M S, Wallenfels-Thilo B, Sierra A. et al . Antiproliferative and cytotoxic properties of bevacizumab on different ocular cells.  Br J Ophthalmol. 2006;  90 1316-1321
  • 28 Spitzer M S, Yoeruek E, Sierra A. et al . Comparative antiproliferative and cytotoxic profile of bevacizumab (Avastin), pegaptanib (Macugen) and ranibizumab (Lucentis) on different ocular cells.  Graefes Arch Clin Exp Ophthalmol. 2007;  245 1837-1842
  • 29 Suzuma K, Takagi H, Otani A. et al . Hypoxia and vascular endothelial growth factor stimulate angiogenic integrin expression in bovine retinal microvascular endothelial cells.  Invest Ophthalmol Vis Sci. 1998;  39 1028-1035
  • 30 Tsukita S, Furuse M, Itoh M. Multifunctional strands in tight junctions.  Nat Rev Mol Cell Biol. 2001;  2 285-293
  • 31 Vinores S A. Technology evaluation: pegaptanib, Eyetech/Pfizer.  Curr Opin Mol Ther. 2003;  5 673-679
  • 32 Watanabe D, Suzuma K, Suzuma I. et al . Vitreous levels of angiopoietin 2 and vascular endothelial growth factor in patients with proliferative diabetic retinopathy.  Am J Ophthalmol. 2005;  139 476-481
  • 33 Witmer A N, Blaauwgeers H G, Weich H A. et al . Altered expression patterns of VEGF receptors in human diabetic retina and in experimental VEGF induced retinopathy in monkey.  Invest Ophthalmol Vis Sci. 2002;  43 849-857
  • 34 Wong V. Phosphorylation of occludin correlates with occludin localization and funciton at the tight junction.  Am J Physiol. 1997;  273 C1859-1867

Dr. Heidrun L. Deissler

Augenklinik, Universitätsklinikum Ulm

Prittwitzstraße 43

89075 Ulm

Phone: ++ 49/7 31/50 05 91 55

Fax: ++ 49/7 31/50 04 29 60

Email: heidrun.deissler@uniklinik-ulm.de