Z Gastroenterol 2008; 46(12): 1384-1392
DOI: 10.1055/s-2008-1027655
Übersicht

© Georg Thieme Verlag KG Stuttgart · New York

Molekulare Mechanismen und klinische Auswirkungen der Tumorkachexie

Molecular Mechanisms and its Clinical Impact in Cancer CachexiaJ. Bachmann1 , H. Friess1 , M. E. Martignoni1
  • 1Chirurgische Klinik und Poliklinik, Klinikum rechts der Isar
Further Information

Publication History

Manuskript eingetroffen: 27.1.2008

Manuskript akzeptiert: 27.6.2008

Publication Date:
03 December 2008 (online)

Zusammenfassung

Kachexie beschreibt einen „schlechten Zustand” eines Patienten; dieses Syndrom kann bei chronischen benignen Erkrankungen (wie Morbus Crohn, Herzinsuffizienz, chronischen Nierenerkrankungen) sowie malignen Erkrankungen auftreten und stellt einen wesentlichen prognostischen Faktor dar. Anhand der vorliegenden Publikation soll der aktuelle Stand der Forschung zu pathophysiologischen Mechanismen der Kachexie insbesondere beim Pankreaskarzinom dargelegt werden. Der Gewichtsverlust bei malignen Erkrankungen ist vor allem auf Anorexie mit daraus resultierender Mangelernährung und einen progredienten Abbau von Muskel- und Fettgewebe zurückzuführen. An dieser Entwicklung sind verschiedene Zytokine beteiligt (u. a. TNF-α, IFN-γ, IL-1, IL-6). Über den Ubiquitin-Proteasom-Signalweg wird der wesentliche Anteil des Proteins abgebaut, in diesen greift auch der Proteolysis inducing Factor (PIF) ein; der Nachweis erhöhter Mengen einer hormonabhängigen Lipase bei kachektischen Tumorpatienten weist darauf hin, dass ein gesteigerter Fettkatabolismus für den Verlust von Fettgewebe wichtig zu sein scheint. Die Entwicklung einer effektiven pharmakologischen Therapie stellt die zentrale klinische Herausforderung dar; bisher konnte keine einen lang anhaltenden Effekt auf das Überleben bei Patienten mit einer Tumorkachexie erbringen. Kachexie ist eine schwerwiegende Erkrankung, die besonders häufig bei Patienten mit Pankreaskarzinom auftritt. Die Kachexie beeinträchtigt nachhaltig die Lebensqualität und verschlechtert wesentlich die Prognose. Ziel der Forschung muss sein, in zentrale Stellen der Kachexie-Regelkreise einzugreifen.

Abstract

Cachexia is a term used to describe the poor status of a patient suffering from a benign disease (Crohn’s disease, chronic heart and kidney failure) as well as from a malignant disease. Cachexia has an important impact on the survival and morbidity in patients with cancer. The aim of this study is to elucidate the pathophysiology in cancer cachexia with a special emphasis on pancreatic cancer. The dramatic weight loss in malignant diseases is due to anorexia resulting in malnutrition and is characterised by a progressive loss of muscle and fat tissue. Different cytokines like TNF-α, IFN-γ, IL-1, IL-6 are involved in this process. Via the ubiquitin-proteasome pathway, in which also the proteolysis inducing factor (PIF) is involved, the majority of protein is degraded. In patients with cancer cachexia we find an elevated level of lipases, which indicates that rather fat catabolism and not reduced fat synthesis is the main factor in fat metabolism. The development of an effective (pharmacological) treatment is still the main challenge. As yet, none of the used therapies show a long-lasting effect on weight stabilisation and survial. Cachexia is an important issue, especially in pancreatic cancer; it influences the qualitiy of life and has an important impact on survival. Today, there are only a few different pharmacological therapies used in the treatment of cancer cachexia, but each and every single treatment has failed to show a persistent effect on survival. The aim of research and treatment is to interrupt the natural clinical course of cachexia.

Literatur

  • 1 Camps C, Iranzo V, Bremnes R M. et al . Anorexia-Cachexia syndrome in cancer: implications of the ubiquitin-proteasome pathway.  Support Care Cancer. 2006;  14(12) 1173-1183
  • 2 Barber M D, Ross J A, Fearon K C. Changes in nutritional, functional, and inflammatory markers in advanced pancreatic cancer.  Nutr Cancer. 1999;  35 106-110
  • 3 Karthaus M, Frieler F. Eating and drinking at the end of life. Nutritional support for cancer patients in palliative care.  Wien Med Wochenschr. 2004;  154 192-198
  • 4 Deans C, Wigmore S J. Systemic inflammation, cachexia and prognosis in patients with cancer.  Curr Opin Clin Nutr Metab Care. 2005;  8 265-269
  • 5 Bossola M, Pacelli F, Tortorelli A. et al . Cancer Cachexia: It’s Time for More Clinical Trials.  Ann Surg Oncol. 2007;  14 276-285
  • 6 Laviano A, Meguid M M, Inui A. et al . Therapy insight: Cancer anorexia-cachexia syndrome – when all you can eat is yourself.  Nat Clin Pract Oncol. 2005;  2 158-165
  • 7 Dewys W D, Begg C, Lavin P T. et al . Prognostic effect of weight loss prior to chemotherapy in cancer patients. Eastern Cooperative Oncology Group.  Am J Med. 1980;  69 491-497
  • 8 Baldwin C, Parsons T, Logan S. Dietary advice for illness-related malnutrition in adults.  Cochrane Database Syst Rev. 2001;  (2) CD002008
  • 9 Uomo G, Galluci F, Rabitti P. Anorexia-cachexia syndrome in pancreatic cancer: recent development in research and management.  JOP. 2006;  7 157-162
  • 10 Tisdale M J. Cancer anorexia and cachexia.  Nutrition. 2001;  17 438-442
  • 11 Wilcock A. Anorexia: a taste of things to come?.  Palliat Med. 2006;  20 43-45
  • 12 Mitch W E. Cachexia in chronic kidney disease: a link to defective central nervous system control of appetite.  J Clin Invest. 2005;  115 1476-1478
  • 13 Kotler D P. Cachexia.  Ann Intern Med. 2000;  133 622-634
  • 14 Tisdale M J. Cachexia in cancer patients.  Nat Rev Cancer. 2002;  2 862-871
  • 15 Anker S D, Coats A J. Cardiac cachexia: a syndrome with impaired survival and immune and neuroendocrine activation.  Chest. 1999;  115 836-847
  • 16 Anker S D, Ponikowski P, Varney S. et al . Wasting as independent risk factor for mortality in chronic heart failure.  Lancet. 1997;  349 1050-1053
  • 17 Fearon K C, Von Meyenfeldt M F, Moses A G. et al . Effect of a protein and energy dense N-3 fatty acid enriched oral supplement on loss of weight and lean tissue in cancer cachexia: a randomised double blind trial.  Gut. 2003;  52 1479-1486
  • 18 Lorite M J, Smith H J, Arnold J A. et al . Activation of ATP-ubiquitin-dependent proteolysis in skeletal muscle in vivo and murine myoblasts in vitro by a proteolysis-inducing factor (PIF).  Br J Cancer. 2001;  85 297-302
  • 19 Tisdale M J. Loss of skeletal muscle in cancer: biochemical mechanisms.  Front Biosci. 2001;  6 D164-D174
  • 20 Costelli P, Baccino F M. Mechanisms of skeletal muscle depletion in wasting syndromes: role of ATP-ubiquitin-dependent proteolysis.  Curr Opin Clin Nutr Metab Care. 2003;  6 407-412
  • 21 Ripamonti C. Management of dyspnea in advanced cancer patients.  Support Care Cancer. 1999;  7 233-243
  • 22 Dewys W D. Anorexia as a general effect of cancer.  Cancer. 1979;  43 2013-2019
  • 23 Wigmore S J, Plester C E, Ross J A. et al . Contribution of anorexia and hypermetabolism to weight loss in anicteric patients with pancreatic cancer.  Br J Surg. 1997;  84 196-197
  • 24 Argiles J M, Moore-Carrasco R, Busquets S. et al . Catabolic mediators as targets for cancer cachexia.  Drug Discov Today. 2003;  8 838-844
  • 25 Inui A. Cancer anorexia-cachexia syndrome: are neuropeptides the key?.  Cancer Res. 1999;  59 4493-4501
  • 26 Barber M D, Fearon K C, Tisdale M J. et al . Effect of a fish oil-enriched nutritional supplement on metabolic mediators in patients with pancreatic cancer cachexia.  Nutr Cancer. 2001;  40 118-124
  • 27 Cutsem van E, Arends J. The causes and consequences of cancer-associated malnutrition.  Eur J Oncol Nurs. 2005;  9 (Suppl 2) S51-S63
  • 28 Argiles J M, Meijsing S H, Pallares-Trujillo J. et al . Cancer cachexia: a therapeutic approach.  Med Res Rev. 2001;  21 83-101
  • 29 Inui A, Meguid M M. Cachexia and obesity: two sides of one coin?.  Curr Opin Clin Nutr Metab Care. 2003;  6 395-399
  • 30 Nelson K A. Modern management of the cancer anorexia-cachexia syndrome.  Curr Oncol Rep. 2000;  2 362-368
  • 31 Nelson K A, Walsh D. The cancer anorexia-cachexia syndrome: a survey of the Prognostic Inflammatory and Nutritional Index (PINI) in advanced disease.  J Pain Symptom Manage. 2002;  24 424-428
  • 32 Argiles J M, Almendro V, Busquets S. et al . The pharmacological treatment of cachexia.  Curr Drug Targets. 2004;  5 265-277
  • 33 Davidson W, Ash S, Capra S. et al . Weight stabilisation is associated with improved survival duration and quality of life in unresectable pancreatic cancer.  Clin Nutr. 2004;  23 239-247
  • 34 Martignoni M E, Kunze P, Friess H. Cancer cachexia.  Mol Cancer. 2003;  2 36
  • 35 Barber M D, McMillan D C, Wallace A M. et al . The response of leptin, interleukin-6 and fat oxidation to feeding in weight-losing patients with pancreatic cancer.  Br J Cancer. 2004;  90 1129-1132
  • 36 Falconer J S, Fearon K C, Plester C E. et al . Cytokines, the acute-phase response, and resting energy expenditure in cachectic patients with pancreatic cancer.  Ann Surg. 1994;  219 325-331
  • 37 Tisdale M J. The ‘cancer cachectic factor’.  Support Care Cancer. 2003;  11 73-78
  • 38 Bosaeus I, Daneryd P, Svanberg E. et al . Dietary intake and resting energy expenditure in relation to weight loss in unselected cancer patients.  Int J Cancer. 2001;  93 380-383
  • 39 Wigmore S J, Falconer J S, Plester C E. et al . Ibuprofen reduces energy expenditure and acute-phase protein production compared with placebo in pancreatic cancer patients.  Br J Cancer. 1995;  72 185-188
  • 40 Harvie M N, Campbell I T. Energy balance, cancer and the sympathetic nervous system.  Eur J Cancer. 2000;  36 289-292
  • 41 Young V R. Energy metabolism and requirements in the cancer patient.  Cancer Res. 1977;  37 2336-2347
  • 42 Inui A. Neuropeptide Y: a key molecule in anorexia and cachexia in wasting disorders?.  Mol Med Today. 1999;  5 79-85
  • 43 Argiles J M, Busquets S, Lopez-Soriano F J. Cytokines in the pathogenesis of cancer cachexia.  Curr Opin Clin Nutr Metab Care. 2003;  6 401-406
  • 44 Palesty J A, Dudrick S J. What we have learned about cachexia in gastrointestinal cancer.  Dig Dis. 2003;  21 198-213
  • 45 Gordon J N, Green S R, Goggin P M. Cancer cachexia.  QJM. 2005;  98 779-788
  • 46 Barber M D. Cancer cachexia and its treatment with fish-oil-enriched nutritional supplementation.  Nutrition. 2001;  17 751-755
  • 47 Moldawer L L, Copeland III E M. Proinflammatory cytokines, nutritional support, and the cachexia syndrome: interactions and therapeutic options.  Cancer. 1997;  79 1828-1839
  • 48 Esper D H, Harb W A. The cancer cachexia syndrome: a review of metabolic and clinical manifestations.  Nutr Clin Pract. 2005;  20 369-376
  • 49 Mantovani G, Maccio A, Massa E. et al . Managing cancer-related anorexia/cachexia.  Drugs. 2001;  61 499-514
  • 50 Ebrahimi B, Tucker S L, Li D. et al . Cytokines in pancreatic carcinoma: correlation with phenotypic characteristics and prognosis.  Cancer. 2004;  101 2727-2736
  • 51 Martignoni M E, Kunze P, Hildebrandt W. et al . Role of mononuclear cells and inflammatory cytokines in pancreatic cancer-related cachexia.  Clin Cancer Res. 2005;  11 5802-5808
  • 52 Falconer J S, Fearon K C, Ross J A. et al . Acute-phase protein response and survival duration of patients with pancreatic cancer.  Cancer. 1995;  75 2077-2082
  • 53 Batterham R L, Cowley M A, Small C J. et al . Gut hormone PYY(3 – 36) physiologically inhibits food intake.  Nature. 2002;  418 650-654
  • 54 Tisdale M J. Biochemical mechanisms of cellular catabolism.  Curr Opin Clin Nutr Metab Care. 2002;  5 401-405
  • 55 Smith H J, Tisdale M J. Signal transduction pathways involved in proteolysis-inducing factor induced proteasome expression in murine myotubes.  Br J Cancer. 2003;  89 1783-1788
  • 56 Gomes-Marcondes M C, Smith H J, Cooper J C. et al . Development of an in-vitro model system to investigate the mechanism of muscle protein catabolism induced by proteolysis-inducing factor.  Br J Cancer. 2002;  86 1628-1633
  • 57 Tisdale M J. Metabolic abnormalities in cachexia and anorexia.  Nutrition. 2000;  16 1013-1014
  • 58 Cabal-Manzano R, Bhargava P, Torres-Duarte A. et al . Proteolysis-inducing factor is expressed in tumours of patients with gastrointestinal cancers and correlates with weight loss.  Br J Cancer. 2001;  84 1599-1601
  • 59 Watchorn T M, Waddell I, Dowidar N. et al . Proteolysis-inducing factor regulates hepatic gene expression via the transcription factors NF-(kappa)B and STAT3.  FASEB J. 2001;  15 562-564
  • 60 Watchorn T M, Waddell I, Ross J A. Proteolysis-inducing factor differentially influences transcriptional regulation in endothelial subtypes.  Am J Physiol Endocrinol Metab. 2002;  282 E763-E769
  • 61 Whitehouse A S, Tisdale M J. Increased expression of the ubiquitin-proteasome pathway in murine myotubes by proteolysis-inducing factor (PIF) is associated with activation of the transcription factor NF-kappaB.  Br J Cancer. 2003;  89 1116-1122
  • 62 Lecker S H, Solomon V, Mitch W E. et al . Muscle protein breakdown and the critical role of the ubiquitin-proteasome pathway in normal and disease states.  J Nutr. 1999;  129 227S-237S
  • 63 Khal J, Wyke S M, Russell S T. et al . Expression of the ubiquitin-proteasome pathway and muscle loss in experimental cancer cachexia.  Br J Cancer. 2005;  1-7
  • 64 Voisin L, Breuille D, Combaret L. et al . Muscle wasting in a rat model of long-lasting sepsis results from the activation of lysosomal, Ca2 +-activated, and ubiquitin-proteasome proteolytic pathways.  J Clin Invest. 1996;  97 1610-1617
  • 65 O’Riordain M G, Falconer J S, Maingay J. et al . Peripheral blood cells from weight-losing cancer patients control the hepatic acute phase response by a primarily interleukin-6 dependent mechanism.  Int J Oncol. 1999;  15 823-827
  • 66 Wigmore S J, Ross J A, Falconer J S. et al . The effect of polyunsaturated fatty acids on the progress of cachexia in patients with pancreatic cancer.  Nutrition. 1996;  12 S27-S30
  • 67 Wigmore S J, Todorov P T, Barber M D. et al . Characteristics of patients with pancreatic cancer expressing a novel cancer cachectic factor.  Br J Surg. 2000;  87 53-58
  • 68 Bauer J, Capra S, Battistuta D. et al . Compliance with nutrition prescription improves outcomes in patients with unresectable pancreatic cancer.  Clin Nutr. 2008;  24 998-1004
  • 69 Willox J C, Corr J, Shaw J. et al . Prednisolone as an appetite stimulant in patients with cancer.  Br Med J (Clin Res Ed). 1984;  288 27
  • 70 Bruera E, Ernst S, Hagen N. et al . Effectiveness of megestrol acetate in patients with advanced cancer: a randomized, double-blind, crossover study.  Cancer Prev Control. 1998;  2 74-78
  • 71 Vadell C, Segui M A, Gimenez-Arnau J M. et al . Anticachectic efficacy of megestrol acetate at different doses and versus placebo in patients with neoplastic cachexia.  Am J Clin Oncol. 1998;  21 347-351
  • 72 Loprinzi C L, Schaid D J, Dose A M. et al . Body-composition changes in patients who gain weight while receiving megestrol acetate.  J Clin Oncol. 1993;  11 152-154
  • 73 Strasser F, Luftner D, Possinger K. et al . Comparison of orally administered cannabis extract and delta-9-tetrahydrocannabinol in treating patients with cancer-related anorexia-cachexia syndrome: a multicenter, phase III, randomized, double-blind, placebo-controlled clinical trial from the Cannabis-In-Cachexia-Study-Group.  J Clin Oncol. 2006;  24 3394-3400
  • 74 Stephens T W, Basinski M, Bristow P K. et al . The role of neuropeptide Y in the antiobesity action of the obese gene product.  Nature. 1995;  377 530-532
  • 75 Pascual L A, Figuls M, Urrutia C G. et al . Systematic review of megestrol acetate in the treatment of anorexia-cachexia syndrome.  J Pain Symptom Manage. 2004;  27 360-369
  • 76 Endres S, Ghorbani R, Kelley V E. et al . The effect of dietary supplementation with n-3 polyunsaturated fatty acids on the synthesis of interleukin-1 and tumor necrosis factor by mononuclear cells.  N Engl J Med. 1989;  320 265-271
  • 77 Wigmore S J, Fearon K C, Maingay J P. et al . Down-regulation of the acute-phase response in patients with pancreatic cancer cachexia receiving oral eicosapentaenoic acid is mediated via suppression of interleukin-6.  Clin Sci. 1997;  92 215-221
  • 78 Jho D H, Cole S M, Lee E M. et al . Role of omega-3 fatty acid supplementation in inflammation and malignancy.  Integr Cancer Ther. 2004;  3 98-111
  • 79 Fearon K C, Barber M D, Moses A G. et al . Double-blind, placebo-controlled, randomized study of eicosapentaenoic acid diester in patients with cancer cachexia.  J Clin Oncol. 2006;  24 3401-3407
  • 80 Gordon J N, Trebble T M, Ellis R D. et al . Thalidomide in the treatment of cancer cachexia: a randomised placebo controlled trial.  Gut. 2005;  54 540-545
  • 81 Goldberg R M, Loprinzi C L, Mailliard J A. et al . Pentoxifylline for treatment of cancer anorexia and cachexia? A randomized, double-blind, placebo-controlled trial.  J Clin Oncol. 1995;  13 2856-2859
  • 82 McMillan D C, Wigmore S J, Fearon K C. et al . A prospective randomized study of megestrol acetate and ibuprofen in gastrointestinal cancer patients with weight loss.  Br J Cancer. 1999;  79 495-500
  • 83 McMillan D C, O’Gorman P, Fearon K C. et al . A pilot study of megestrol acetate and ibuprofen in the treatment of cachexia in gastrointestinal cancer patients.  Br J Cancer. 1997;  76 788-790
  • 84 Neoptolemos J, Dunn J, Stocken D. et al . Adjuvant chemoradiotherapy and chemotherapy in resectable pancreatic cancer: a randomised controlled trial.  Lancet. 2001;  358 1576-1585
  • 85 Park J, Ryu J, Lee J. et al . Gemcitabine chemotherapy versus 5-fluorouracil-based concurrent chemoradiotherapy in locally advanced unresectable pancreatic cancer.  Pancreas. 2006;  33 397-402
  • 86 Park J, Yoon Y, Kim Y. et al . Survival and prognostic factors of unresectable pancreatic cancer.  J Clin Gastroenterol. 2008;  42 86-91
  • 87 Oettle H, Neuhaus P. Adjuvant therapy in pancreatic cancer: a critical appraisal.  Drugs. 2007;  67 2293-2310
  • 88 Fisher B, Perera F, Kocha W. et al . Analysis of the clinical benefit of 5-fluorouracil and radiation treatment in locally advanced pancreatic cancer.  Int J Radiat Oncol Biol Phys. 2008;  45 291-295
  • 89 Michalski C, Kleeff J, Jaeger D. et al . Adjuvant treatment of pancreatic cancer.  Dtsch med Wochenschr. 2007;  132 803-807
  • 90 Melstrom L, Melstrom K J, Ding X. et al . Mechanisms of skeletal muscle degradation and its therapy in cancer cachexia.  Histology and Histopathology. 2007;  22 805-814
  • 91 Smith H J, Lorite M J, Tisdale M J. Effect of a cancer cachectic factor on protein synthesis/degradation in murine C 2C12 myoblasts: modulation by eicosapentaenoic acid.  Cancer research. 1999;  59 5507-5513
  • 92 Tisdale M J. Wasting in cancer.  The Journal of Nutrition. 1999;  129 243S-246S

PD Dr. M. E. Martignoni

Chirurgische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität München

Ismaninger Straße 22

81675 München

Phone: ++ 49/89/41 40 50 93

Email: me.martignoni@chir.med.tu-muenchen.de