RSS-Feed abonnieren
DOI: 10.1055/s-2008-1027655
© Georg Thieme Verlag KG Stuttgart · New York
Molekulare Mechanismen und klinische Auswirkungen der Tumorkachexie
Molecular Mechanisms and its Clinical Impact in Cancer CachexiaPublikationsverlauf
Manuskript eingetroffen: 27.1.2008
Manuskript akzeptiert: 27.6.2008
Publikationsdatum:
03. Dezember 2008 (online)

Zusammenfassung
Kachexie beschreibt einen „schlechten Zustand” eines Patienten; dieses Syndrom kann bei chronischen benignen Erkrankungen (wie Morbus Crohn, Herzinsuffizienz, chronischen Nierenerkrankungen) sowie malignen Erkrankungen auftreten und stellt einen wesentlichen prognostischen Faktor dar. Anhand der vorliegenden Publikation soll der aktuelle Stand der Forschung zu pathophysiologischen Mechanismen der Kachexie insbesondere beim Pankreaskarzinom dargelegt werden. Der Gewichtsverlust bei malignen Erkrankungen ist vor allem auf Anorexie mit daraus resultierender Mangelernährung und einen progredienten Abbau von Muskel- und Fettgewebe zurückzuführen. An dieser Entwicklung sind verschiedene Zytokine beteiligt (u. a. TNF-α, IFN-γ, IL-1, IL-6). Über den Ubiquitin-Proteasom-Signalweg wird der wesentliche Anteil des Proteins abgebaut, in diesen greift auch der Proteolysis inducing Factor (PIF) ein; der Nachweis erhöhter Mengen einer hormonabhängigen Lipase bei kachektischen Tumorpatienten weist darauf hin, dass ein gesteigerter Fettkatabolismus für den Verlust von Fettgewebe wichtig zu sein scheint. Die Entwicklung einer effektiven pharmakologischen Therapie stellt die zentrale klinische Herausforderung dar; bisher konnte keine einen lang anhaltenden Effekt auf das Überleben bei Patienten mit einer Tumorkachexie erbringen. Kachexie ist eine schwerwiegende Erkrankung, die besonders häufig bei Patienten mit Pankreaskarzinom auftritt. Die Kachexie beeinträchtigt nachhaltig die Lebensqualität und verschlechtert wesentlich die Prognose. Ziel der Forschung muss sein, in zentrale Stellen der Kachexie-Regelkreise einzugreifen.
Abstract
Cachexia is a term used to describe the poor status of a patient suffering from a benign disease (Crohn’s disease, chronic heart and kidney failure) as well as from a malignant disease. Cachexia has an important impact on the survival and morbidity in patients with cancer. The aim of this study is to elucidate the pathophysiology in cancer cachexia with a special emphasis on pancreatic cancer. The dramatic weight loss in malignant diseases is due to anorexia resulting in malnutrition and is characterised by a progressive loss of muscle and fat tissue. Different cytokines like TNF-α, IFN-γ, IL-1, IL-6 are involved in this process. Via the ubiquitin-proteasome pathway, in which also the proteolysis inducing factor (PIF) is involved, the majority of protein is degraded. In patients with cancer cachexia we find an elevated level of lipases, which indicates that rather fat catabolism and not reduced fat synthesis is the main factor in fat metabolism. The development of an effective (pharmacological) treatment is still the main challenge. As yet, none of the used therapies show a long-lasting effect on weight stabilisation and survial. Cachexia is an important issue, especially in pancreatic cancer; it influences the qualitiy of life and has an important impact on survival. Today, there are only a few different pharmacological therapies used in the treatment of cancer cachexia, but each and every single treatment has failed to show a persistent effect on survival. The aim of research and treatment is to interrupt the natural clinical course of cachexia.
Schlüsselwörter
Kachexie - Survival - Pankreaskarzinom - Gewichtsverlust
Key words
cachexia - survival - pancreatic cancer - loss of weight
Literatur
- 1
Camps C, Iranzo V, Bremnes R M. et al .
Anorexia-Cachexia syndrome in cancer: implications of the ubiquitin-proteasome pathway.
Support Care Cancer.
2006;
14(12)
1173-1183
MissingFormLabel
- 2
Barber M D, Ross J A, Fearon K C.
Changes in nutritional, functional, and inflammatory markers in advanced pancreatic
cancer.
Nutr Cancer.
1999;
35
106-110
MissingFormLabel
- 3
Karthaus M, Frieler F.
Eating and drinking at the end of life. Nutritional support for cancer patients in
palliative care.
Wien Med Wochenschr.
2004;
154
192-198
MissingFormLabel
- 4
Deans C, Wigmore S J.
Systemic inflammation, cachexia and prognosis in patients with cancer.
Curr Opin Clin Nutr Metab Care.
2005;
8
265-269
MissingFormLabel
- 5
Bossola M, Pacelli F, Tortorelli A. et al .
Cancer Cachexia: It’s Time for More Clinical Trials.
Ann Surg Oncol.
2007;
14
276-285
MissingFormLabel
- 6
Laviano A, Meguid M M, Inui A. et al .
Therapy insight: Cancer anorexia-cachexia syndrome – when all you can eat is yourself.
Nat Clin Pract Oncol.
2005;
2
158-165
MissingFormLabel
- 7
Dewys W D, Begg C, Lavin P T. et al .
Prognostic effect of weight loss prior to chemotherapy in cancer patients. Eastern
Cooperative Oncology Group.
Am J Med.
1980;
69
491-497
MissingFormLabel
- 8
Baldwin C, Parsons T, Logan S.
Dietary advice for illness-related malnutrition in adults.
Cochrane Database Syst Rev.
2001;
(2)
CD002008
MissingFormLabel
- 9
Uomo G, Galluci F, Rabitti P.
Anorexia-cachexia syndrome in pancreatic cancer: recent development in research and
management.
JOP.
2006;
7
157-162
MissingFormLabel
- 10
Tisdale M J.
Cancer anorexia and cachexia.
Nutrition.
2001;
17
438-442
MissingFormLabel
- 11
Wilcock A.
Anorexia: a taste of things to come?.
Palliat Med.
2006;
20
43-45
MissingFormLabel
- 12
Mitch W E.
Cachexia in chronic kidney disease: a link to defective central nervous system control
of appetite.
J Clin Invest.
2005;
115
1476-1478
MissingFormLabel
- 13
Kotler D P.
Cachexia.
Ann Intern Med.
2000;
133
622-634
MissingFormLabel
- 14
Tisdale M J.
Cachexia in cancer patients.
Nat Rev Cancer.
2002;
2
862-871
MissingFormLabel
- 15
Anker S D, Coats A J.
Cardiac cachexia: a syndrome with impaired survival and immune and neuroendocrine
activation.
Chest.
1999;
115
836-847
MissingFormLabel
- 16
Anker S D, Ponikowski P, Varney S. et al .
Wasting as independent risk factor for mortality in chronic heart failure.
Lancet.
1997;
349
1050-1053
MissingFormLabel
- 17
Fearon K C, Von Meyenfeldt M F, Moses A G. et al .
Effect of a protein and energy dense N-3 fatty acid enriched oral supplement on loss
of weight and lean tissue in cancer cachexia: a randomised double blind trial.
Gut.
2003;
52
1479-1486
MissingFormLabel
- 18
Lorite M J, Smith H J, Arnold J A. et al .
Activation of ATP-ubiquitin-dependent proteolysis in skeletal muscle in vivo and murine
myoblasts in vitro by a proteolysis-inducing factor (PIF).
Br J Cancer.
2001;
85
297-302
MissingFormLabel
- 19
Tisdale M J.
Loss of skeletal muscle in cancer: biochemical mechanisms.
Front Biosci.
2001;
6
D164-D174
MissingFormLabel
- 20
Costelli P, Baccino F M.
Mechanisms of skeletal muscle depletion in wasting syndromes: role of ATP-ubiquitin-dependent
proteolysis.
Curr Opin Clin Nutr Metab Care.
2003;
6
407-412
MissingFormLabel
- 21
Ripamonti C.
Management of dyspnea in advanced cancer patients.
Support Care Cancer.
1999;
7
233-243
MissingFormLabel
- 22
Dewys W D.
Anorexia as a general effect of cancer.
Cancer.
1979;
43
2013-2019
MissingFormLabel
- 23
Wigmore S J, Plester C E, Ross J A. et al .
Contribution of anorexia and hypermetabolism to weight loss in anicteric patients
with pancreatic cancer.
Br J Surg.
1997;
84
196-197
MissingFormLabel
- 24
Argiles J M, Moore-Carrasco R, Busquets S. et al .
Catabolic mediators as targets for cancer cachexia.
Drug Discov Today.
2003;
8
838-844
MissingFormLabel
- 25
Inui A.
Cancer anorexia-cachexia syndrome: are neuropeptides the key?.
Cancer Res.
1999;
59
4493-4501
MissingFormLabel
- 26
Barber M D, Fearon K C, Tisdale M J. et al .
Effect of a fish oil-enriched nutritional supplement on metabolic mediators in patients
with pancreatic cancer cachexia.
Nutr Cancer.
2001;
40
118-124
MissingFormLabel
- 27
Cutsem van E, Arends J.
The causes and consequences of cancer-associated malnutrition.
Eur J Oncol Nurs.
2005;
9 (Suppl 2)
S51-S63
MissingFormLabel
- 28
Argiles J M, Meijsing S H, Pallares-Trujillo J. et al .
Cancer cachexia: a therapeutic approach.
Med Res Rev.
2001;
21
83-101
MissingFormLabel
- 29
Inui A, Meguid M M.
Cachexia and obesity: two sides of one coin?.
Curr Opin Clin Nutr Metab Care.
2003;
6
395-399
MissingFormLabel
- 30
Nelson K A.
Modern management of the cancer anorexia-cachexia syndrome.
Curr Oncol Rep.
2000;
2
362-368
MissingFormLabel
- 31
Nelson K A, Walsh D.
The cancer anorexia-cachexia syndrome: a survey of the Prognostic Inflammatory and
Nutritional Index (PINI) in advanced disease.
J Pain Symptom Manage.
2002;
24
424-428
MissingFormLabel
- 32
Argiles J M, Almendro V, Busquets S. et al .
The pharmacological treatment of cachexia.
Curr Drug Targets.
2004;
5
265-277
MissingFormLabel
- 33
Davidson W, Ash S, Capra S. et al .
Weight stabilisation is associated with improved survival duration and quality of
life in unresectable pancreatic cancer.
Clin Nutr.
2004;
23
239-247
MissingFormLabel
- 34
Martignoni M E, Kunze P, Friess H.
Cancer cachexia.
Mol Cancer.
2003;
2
36
MissingFormLabel
- 35
Barber M D, McMillan D C, Wallace A M. et al .
The response of leptin, interleukin-6 and fat oxidation to feeding in weight-losing
patients with pancreatic cancer.
Br J Cancer.
2004;
90
1129-1132
MissingFormLabel
- 36
Falconer J S, Fearon K C, Plester C E. et al .
Cytokines, the acute-phase response, and resting energy expenditure in cachectic patients
with pancreatic cancer.
Ann Surg.
1994;
219
325-331
MissingFormLabel
- 37
Tisdale M J.
The ‘cancer cachectic factor’.
Support Care Cancer.
2003;
11
73-78
MissingFormLabel
- 38
Bosaeus I, Daneryd P, Svanberg E. et al .
Dietary intake and resting energy expenditure in relation to weight loss in unselected
cancer patients.
Int J Cancer.
2001;
93
380-383
MissingFormLabel
- 39
Wigmore S J, Falconer J S, Plester C E. et al .
Ibuprofen reduces energy expenditure and acute-phase protein production compared with
placebo in pancreatic cancer patients.
Br J Cancer.
1995;
72
185-188
MissingFormLabel
- 40
Harvie M N, Campbell I T.
Energy balance, cancer and the sympathetic nervous system.
Eur J Cancer.
2000;
36
289-292
MissingFormLabel
- 41
Young V R.
Energy metabolism and requirements in the cancer patient.
Cancer Res.
1977;
37
2336-2347
MissingFormLabel
- 42
Inui A.
Neuropeptide Y: a key molecule in anorexia and cachexia in wasting disorders?.
Mol Med Today.
1999;
5
79-85
MissingFormLabel
- 43
Argiles J M, Busquets S, Lopez-Soriano F J.
Cytokines in the pathogenesis of cancer cachexia.
Curr Opin Clin Nutr Metab Care.
2003;
6
401-406
MissingFormLabel
- 44
Palesty J A, Dudrick S J.
What we have learned about cachexia in gastrointestinal cancer.
Dig Dis.
2003;
21
198-213
MissingFormLabel
- 45
Gordon J N, Green S R, Goggin P M.
Cancer cachexia.
QJM.
2005;
98
779-788
MissingFormLabel
- 46
Barber M D.
Cancer cachexia and its treatment with fish-oil-enriched nutritional supplementation.
Nutrition.
2001;
17
751-755
MissingFormLabel
- 47
Moldawer L L, Copeland III E M.
Proinflammatory cytokines, nutritional support, and the cachexia syndrome: interactions
and therapeutic options.
Cancer.
1997;
79
1828-1839
MissingFormLabel
- 48
Esper D H, Harb W A.
The cancer cachexia syndrome: a review of metabolic and clinical manifestations.
Nutr Clin Pract.
2005;
20
369-376
MissingFormLabel
- 49
Mantovani G, Maccio A, Massa E. et al .
Managing cancer-related anorexia/cachexia.
Drugs.
2001;
61
499-514
MissingFormLabel
- 50
Ebrahimi B, Tucker S L, Li D. et al .
Cytokines in pancreatic carcinoma: correlation with phenotypic characteristics and
prognosis.
Cancer.
2004;
101
2727-2736
MissingFormLabel
- 51
Martignoni M E, Kunze P, Hildebrandt W. et al .
Role of mononuclear cells and inflammatory cytokines in pancreatic cancer-related
cachexia.
Clin Cancer Res.
2005;
11
5802-5808
MissingFormLabel
- 52
Falconer J S, Fearon K C, Ross J A. et al .
Acute-phase protein response and survival duration of patients with pancreatic cancer.
Cancer.
1995;
75
2077-2082
MissingFormLabel
- 53
Batterham R L, Cowley M A, Small C J. et al .
Gut hormone PYY(3 – 36) physiologically inhibits food intake.
Nature.
2002;
418
650-654
MissingFormLabel
- 54
Tisdale M J.
Biochemical mechanisms of cellular catabolism.
Curr Opin Clin Nutr Metab Care.
2002;
5
401-405
MissingFormLabel
- 55
Smith H J, Tisdale M J.
Signal transduction pathways involved in proteolysis-inducing factor induced proteasome
expression in murine myotubes.
Br J Cancer.
2003;
89
1783-1788
MissingFormLabel
- 56
Gomes-Marcondes M C, Smith H J, Cooper J C. et al .
Development of an in-vitro model system to investigate the mechanism of muscle protein
catabolism induced by proteolysis-inducing factor.
Br J Cancer.
2002;
86
1628-1633
MissingFormLabel
- 57
Tisdale M J.
Metabolic abnormalities in cachexia and anorexia.
Nutrition.
2000;
16
1013-1014
MissingFormLabel
- 58
Cabal-Manzano R, Bhargava P, Torres-Duarte A. et al .
Proteolysis-inducing factor is expressed in tumours of patients with gastrointestinal
cancers and correlates with weight loss.
Br J Cancer.
2001;
84
1599-1601
MissingFormLabel
- 59
Watchorn T M, Waddell I, Dowidar N. et al .
Proteolysis-inducing factor regulates hepatic gene expression via the transcription
factors NF-(kappa)B and STAT3.
FASEB J.
2001;
15
562-564
MissingFormLabel
- 60
Watchorn T M, Waddell I, Ross J A.
Proteolysis-inducing factor differentially influences transcriptional regulation in
endothelial subtypes.
Am J Physiol Endocrinol Metab.
2002;
282
E763-E769
MissingFormLabel
- 61
Whitehouse A S, Tisdale M J.
Increased expression of the ubiquitin-proteasome pathway in murine myotubes by proteolysis-inducing
factor (PIF) is associated with activation of the transcription factor NF-kappaB.
Br J Cancer.
2003;
89
1116-1122
MissingFormLabel
- 62
Lecker S H, Solomon V, Mitch W E. et al .
Muscle protein breakdown and the critical role of the ubiquitin-proteasome pathway
in normal and disease states.
J Nutr.
1999;
129
227S-237S
MissingFormLabel
- 63
Khal J, Wyke S M, Russell S T. et al .
Expression of the ubiquitin-proteasome pathway and muscle loss in experimental cancer
cachexia.
Br J Cancer.
2005;
1-7
MissingFormLabel
- 64
Voisin L, Breuille D, Combaret L. et al .
Muscle wasting in a rat model of long-lasting sepsis results from the activation of
lysosomal, Ca2 +-activated, and ubiquitin-proteasome proteolytic pathways.
J Clin Invest.
1996;
97
1610-1617
MissingFormLabel
- 65
O’Riordain M G, Falconer J S, Maingay J. et al .
Peripheral blood cells from weight-losing cancer patients control the hepatic acute
phase response by a primarily interleukin-6 dependent mechanism.
Int J Oncol.
1999;
15
823-827
MissingFormLabel
- 66
Wigmore S J, Ross J A, Falconer J S. et al .
The effect of polyunsaturated fatty acids on the progress of cachexia in patients
with pancreatic cancer.
Nutrition.
1996;
12
S27-S30
MissingFormLabel
- 67
Wigmore S J, Todorov P T, Barber M D. et al .
Characteristics of patients with pancreatic cancer expressing a novel cancer cachectic
factor.
Br J Surg.
2000;
87
53-58
MissingFormLabel
- 68
Bauer J, Capra S, Battistuta D. et al .
Compliance with nutrition prescription improves outcomes in patients with unresectable
pancreatic cancer.
Clin Nutr.
2008;
24
998-1004
MissingFormLabel
- 69
Willox J C, Corr J, Shaw J. et al .
Prednisolone as an appetite stimulant in patients with cancer.
Br Med J (Clin Res Ed).
1984;
288
27
MissingFormLabel
- 70
Bruera E, Ernst S, Hagen N. et al .
Effectiveness of megestrol acetate in patients with advanced cancer: a randomized,
double-blind, crossover study.
Cancer Prev Control.
1998;
2
74-78
MissingFormLabel
- 71
Vadell C, Segui M A, Gimenez-Arnau J M. et al .
Anticachectic efficacy of megestrol acetate at different doses and versus placebo
in patients with neoplastic cachexia.
Am J Clin Oncol.
1998;
21
347-351
MissingFormLabel
- 72
Loprinzi C L, Schaid D J, Dose A M. et al .
Body-composition changes in patients who gain weight while receiving megestrol acetate.
J Clin Oncol.
1993;
11
152-154
MissingFormLabel
- 73
Strasser F, Luftner D, Possinger K. et al .
Comparison of orally administered cannabis extract and delta-9-tetrahydrocannabinol
in treating patients with cancer-related anorexia-cachexia syndrome: a multicenter,
phase III, randomized, double-blind, placebo-controlled clinical trial from the Cannabis-In-Cachexia-Study-Group.
J Clin Oncol.
2006;
24
3394-3400
MissingFormLabel
- 74
Stephens T W, Basinski M, Bristow P K. et al .
The role of neuropeptide Y in the antiobesity action of the obese gene product.
Nature.
1995;
377
530-532
MissingFormLabel
- 75
Pascual L A, Figuls M, Urrutia C G. et al .
Systematic review of megestrol acetate in the treatment of anorexia-cachexia syndrome.
J Pain Symptom Manage.
2004;
27
360-369
MissingFormLabel
- 76
Endres S, Ghorbani R, Kelley V E. et al .
The effect of dietary supplementation with n-3 polyunsaturated fatty acids on the
synthesis of interleukin-1 and tumor necrosis factor by mononuclear cells.
N Engl J Med.
1989;
320
265-271
MissingFormLabel
- 77
Wigmore S J, Fearon K C, Maingay J P. et al .
Down-regulation of the acute-phase response in patients with pancreatic cancer cachexia
receiving oral eicosapentaenoic acid is mediated via suppression of interleukin-6.
Clin Sci.
1997;
92
215-221
MissingFormLabel
- 78
Jho D H, Cole S M, Lee E M. et al .
Role of omega-3 fatty acid supplementation in inflammation and malignancy.
Integr Cancer Ther.
2004;
3
98-111
MissingFormLabel
- 79
Fearon K C, Barber M D, Moses A G. et al .
Double-blind, placebo-controlled, randomized study of eicosapentaenoic acid diester
in patients with cancer cachexia.
J Clin Oncol.
2006;
24
3401-3407
MissingFormLabel
- 80
Gordon J N, Trebble T M, Ellis R D. et al .
Thalidomide in the treatment of cancer cachexia: a randomised placebo controlled trial.
Gut.
2005;
54
540-545
MissingFormLabel
- 81
Goldberg R M, Loprinzi C L, Mailliard J A. et al .
Pentoxifylline for treatment of cancer anorexia and cachexia? A randomized, double-blind,
placebo-controlled trial.
J Clin Oncol.
1995;
13
2856-2859
MissingFormLabel
- 82
McMillan D C, Wigmore S J, Fearon K C. et al .
A prospective randomized study of megestrol acetate and ibuprofen in gastrointestinal
cancer patients with weight loss.
Br J Cancer.
1999;
79
495-500
MissingFormLabel
- 83
McMillan D C, O’Gorman P, Fearon K C. et al .
A pilot study of megestrol acetate and ibuprofen in the treatment of cachexia in gastrointestinal
cancer patients.
Br J Cancer.
1997;
76
788-790
MissingFormLabel
- 84
Neoptolemos J, Dunn J, Stocken D. et al .
Adjuvant chemoradiotherapy and chemotherapy in resectable pancreatic cancer: a randomised
controlled trial.
Lancet.
2001;
358
1576-1585
MissingFormLabel
- 85
Park J, Ryu J, Lee J. et al .
Gemcitabine chemotherapy versus 5-fluorouracil-based concurrent chemoradiotherapy
in locally advanced unresectable pancreatic cancer.
Pancreas.
2006;
33
397-402
MissingFormLabel
- 86
Park J, Yoon Y, Kim Y. et al .
Survival and prognostic factors of unresectable pancreatic cancer.
J Clin Gastroenterol.
2008;
42
86-91
MissingFormLabel
- 87
Oettle H, Neuhaus P.
Adjuvant therapy in pancreatic cancer: a critical appraisal.
Drugs.
2007;
67
2293-2310
MissingFormLabel
- 88
Fisher B, Perera F, Kocha W. et al .
Analysis of the clinical benefit of 5-fluorouracil and radiation treatment in locally
advanced pancreatic cancer.
Int J Radiat Oncol Biol Phys.
2008;
45
291-295
MissingFormLabel
- 89
Michalski C, Kleeff J, Jaeger D. et al .
Adjuvant treatment of pancreatic cancer.
Dtsch med Wochenschr.
2007;
132
803-807
MissingFormLabel
- 90
Melstrom L, Melstrom K J, Ding X. et al .
Mechanisms of skeletal muscle degradation and its therapy in cancer cachexia.
Histology and Histopathology.
2007;
22
805-814
MissingFormLabel
- 91
Smith H J, Lorite M J, Tisdale M J.
Effect of a cancer cachectic factor on protein synthesis/degradation in murine C 2C12
myoblasts: modulation by eicosapentaenoic acid.
Cancer research.
1999;
59
5507-5513
MissingFormLabel
- 92
Tisdale M J.
Wasting in cancer.
The Journal of Nutrition.
1999;
129
243S-246S
MissingFormLabel
PD Dr. M. E. Martignoni
Chirurgische Klinik und Poliklinik, Klinikum rechts der Isar, Technische Universität
München
Ismaninger Straße 22
81675 München
Telefon: ++ 49/89/41 40 50 93
eMail: me.martignoni@chir.med.tu-muenchen.de