Subscribe to RSS
DOI: 10.1055/s-2008-1032073
Chloroesterification of Enynes Catalyzed by NHC Rhodium Compounds
Publication History
Publication Date:
23 January 2008 (online)
Abstract
An efficient rhodium N-heterocyclic carbene (NHC)-catalyzed chloroesterification of terminal alkynes and enynes has been developed. The reaction was highly regio- and stereospecific: the Z-isomer was obtained as the sole product.
Key words
N-heterocyclic carbene - rhodium - catalysis - chloroesterification - enyne
-
1a
Niementowski SV. J. Prakt. Chem. 1895, 51: 510 ; J. Chem. Soc. Abstr. 1895, 68, 1524 -
1b
Marckwald W. Ber. Dtsch. Chem. Ges. 1891, 23: 3207 ; J. Chem. Soc. Abstr. 1891, 60, 181 - For recent papers, see:
-
2a
Vargas-Sanchez M.Lakhdar S.Couty F.Evano G. Org. Lett. 2006, 8: 5501 -
2b
Bagley MC.Davis T.Dix MC.Widdowson CS.Kipling D. Org. Biomol. Chem. 2006, 4: 4158 -
2c
Chou SY.Chen SST.Chen CH.Chang LS. Tetrahedron Lett. 2006, 47: 7579 -
2d
Coldham I.Dufour S.Haxell TFN.Patel JJ.Sanchez-Jimenez G. J. Am. Chem. Soc. 2006, 128: 10943 -
2e
Yeom CE.Kim YJ.Lee SY.Shin YJ.Kim BM. Tetrahedron 2005, 61: 12227 -
2f
Rudler H.Denise B.Xu YM.Parlier A.Vaissermann J. Eur. J. Org. Chem. 2005, 3724 -
2g
Yadav JS.Reddy BVS.Srinivas M.Sathaiah K. Tetrahedron Lett. 2005, 46: 3489 -
2h
Verado G.Geatti P.Lesa B. Synthesis 2005, 559 -
2i
Duan YZ.Deng MZ. Synlett 2005, 355 - For recent papers, see:
-
3a
Lebel H.Leogane O. Org. Lett. 2006, 8: 5717 -
3b
Majumdar S.Sloan KB. Synth. Commun. 2006, 36: 3537 -
3c
Imori S.Togo H. Synlett 2006, 2629 -
3d
Bhat RG.Ghosh Y.Chandrasekaran S. Tetrahedron Lett. 2004, 45: 7983 -
3e
Peterson MA.Shi HG.Ke PC. Tetrahedron Lett. 2006, 47: 3405 -
3f
Raje VP.Bhat RP.Samant SD. Tetrahedron Lett. 2005, 46: 835 -
4a
Zhang C.Lu X. Synthesis 1996, 586 -
4b
Crousse B.Alami M.Linstrumelle G. Tetrahedron Lett. 1995, 36: 4245 -
4c
Miura M.Okuro K.Hattori A.Nomura M. J. Chem. Soc., Perkin Trans. 1 1989, 73 -
4d
Smith AB.Kilenyi SN. Tetrahedron Lett. 1985, 26: 4419 -
4e
Larock RC.Narayanan K.Hershberger SS. J. Org. Chem. 1983, 48: 4377 -
4f
Modena G. Acc. Chem. Res. 1971, 4: 73 -
5a
Hua R.Shimada S.Tanaka M. J. Am. Chem. Soc. 1998, 120: 12365 -
5b
Hua R.Tanaka M. Tetrahedron Lett. 2004, 45: 2367 -
5c
Wnuk SF.Valdez CA.Valdez NX. J. Carbohydr. Chem. 2001, 20: 71 -
6a
Wang AE.Xie HH.Wang LX.Zhou QL. Tetrahedron 2005, 61: 259 -
6b
Crudden CM.Allen DP. Coord. Chem. Rev. 2004, 248: 2247 -
6c
Cesar V.Bellemin-Laponnaz S.Gade LH. Chem. Soc. Rev. 2004, 33: 619 -
6d
Cavell KJ.McGuinness DS. Coord. Chem. Rev. 2004, 248: 671 -
6e
Lebel H.Janes MK.Charette AB.Nolan SP. J. Am. Chem. Soc. 2004, 126: 5046 -
6f
Herrmann WA.Kocher C. Angew. Chem. Int. Ed. 1997, 36: 2163 -
6g
Bourissou D.Guerret O.Gabbai FP.Bertrand G. Chem. Rev. 2000, 100: 39 -
6h
Crabtree RH. Pure Appl. Chem. 2003, 75: 435 -
6i
Arduengo AJ. Acc. Chem. Res. 1999, 32: 913 -
7a
Herrmann WA.Elison M.Fischer J.Kocher C.Artus GRJ. Angew. Chem. Int. Ed. 1995, 34: 2371 ; and references therein -
7b
Herrmann WA. Angew. Chem. Int. Ed. 2002, 41: 1291 ; and references therein -
7c
Mata JA.Poyatos M.Peris E. Coord. Chem. Rev. 2007, 251: 841 -
7d
Kantchev EAB.O’Brien CJ.Organ MG. Angew. Chem. Int. Ed. 2007, 46: 2768 -
8a
Peris E.Crabtree RH. Coord. Chem. Rev. 2004, 248: 2239 -
8b
Herrmann WA.Ofele K.von Preysing D.Schneider SK. J. Organomet. Chem. 2003, 687: 229 -
8c
Perry MC.Burgess K. Tetrahedron: Asymmetry 2003, 14: 951 -
8d
Herrmann WA. Angew. Chem. Int. Ed. 2002, 41: 1290 -
9a
Praetorius JM.Kotyk MW.Webb JD.Wang R.Crudden CM. Organometallics 2007, 26: 1057 -
9b
Bortenschlager M.Schuetz J.Von Preysing D.Nuyken O.Herrmann WA.Weberskirch R. J. Organomet. Chem. 2005, 690: 6233 -
9c
Zarka MT.Bortenschlager M.Wurst K.Nuyken O.Weberskirch R. Organometallics 2004, 23: 4817 -
10a
Baskakov D.Herrmann WA.Herdtweck E.Hoffmann SD. Organometallics 2007, 26: 626 -
10b
Allen DP.Crudden CM.Calhoun LA.Wang R.Decken A. J. Organomet. Chem. 2005, 690: 5736 -
11a
Yigit M.Oezdemir I.Cetinkaya E.Cetinkaya B. Transition Met. Chem. 2007, 32: 536 -
11b
Lewis JC.Wiedemann SH.Bergman RG.Ellman JA. Org. Lett. 2004, 6: 35 - 12
Park KH.Kim SY.Son SU.Chung YK. Eur. J. Org. Chem. 2003, 4341 -
13a
Evans PA.Baum EW.Fazal AN.Pink M. Chem. Commun. 2005, 63 -
13b
Lee SI.Park SY.Park JH.Jung IG.Choi SY.Chung YK.Lee BY. J. Org. Chem. 2006, 71: 91 - 15
Hua R.Onozawa S.-Y.Tanaka M. Chem. Eur. J. 2005, 11: 3621 - 16 One of the referees suggested the possibility of the formation of an alkynic ester in the cases where low activities for the chloroesterification were observed (entries 4, 8, and 12 in Table 2):
Nozaki K.Sato N.Takaya H. Bull. Chem. Soc. Jpn. 1996, 69: 1629 ; however, no other by-products, except the trimerized product, were found
References and Notes
General Procedure for Rh-NHC-Catalyzed Chloroesterification of Alkyne: To an oven-dried 10-mL tube containing toluene (5 mL), Rh-NHC (14 mg, 1 mol%) and alkyne (0.7 mmol) were added sequentially. After sealing the tube, the reaction temperature was elevated to 100 °C. The reaction was carried out in a test tube capped with a rubber septum. The rubber septum was tied with an aluminum binder. Thus, the reaction could be monitored by taking a small amount of the reaction mixture using a syringe. After the reactant was consumed, the solvent was removed under reduced pressure. Flash column chromatography gave the product.
3ab: 1H NMR (300 MHz, CDCl3): δ = 1.33 (t, J = 7.1 Hz, 3 H), 1.61 (m, 2 H), 1.71 (dd, J = 5.4, 9.2 Hz, 2 H), 2.25 (d, J = 4.1 Hz, 4 H), 4.22 (q, J = 7.1 Hz, 2 H), 6.11 (s, 1 H), 6.76 (t, J = 3.6 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = 14.4, 21.7, 22.6, 26.4, 60.5, 112.9, 133.6, 136.0, 148.9, 165.0. HRMS (EI): m/z calcd for C11H15ClO2: 214.0761; found: 214.0764. IR: 1414 (w), 1433 (w), 1539 (w), 1601 (s), 1720 (s), 2120 (w), 2240 (w), 2296 (s), 2400 (w), 2504 (w), 2672 (m), 2920 (s), 2984 (m), 3048 (s), 3408 (br), 3680 (w), 3736 (w), 3936 (w) cm-1.
3ac: 1H NMR (300 MHz, CDCl3): δ = 1.58 (m, 2 H), 1.68 (m, 2 H), 2.22 (d, J = 6.0 Hz, 4 H), 6.15 (s, 1 H), 6.77 (s, 1 H), 7.35 (m, 5 H) 13C NMR (75 MHz, CDCl3): δ = 21.6, 22.5, 26.3, 66.3, 112.4, 128.3, 128.5, 128.7, 133.6, 136.0, 136.4, 147.6, 164.1. HRMS (EI): m/z calcd for C15H15ClO2: 262.0761; found: 262.0755. IR: 1416 (w), 1454 (w), 1486 (w), 1595 (s), 1723 (s), 1764 (w), 2128 (w), 2304 (s), 2408 (w), 2512 (w), 2672 (w), 2864 (w), 2928 (m), 2976 (w), 3048 (s), 3400(br), 3680 (w), 3744 (w), 3936 (m) cm-1.
3ba: 1H NMR (300 MHz, CDCl3): δ = 3.78 (s, 3 H), 6.20 (s, 1 H), 6.82 (d, J = 15.3 Hz, 1 H), 7.25-7.38 (m, 4 H), 7.47-7.50 (m, 2 H). 13C NMR (75 MHz, CDCl3): δ = 51.8, 117.8, 125.9, 127.8, 129.1, 129.7, 135.4, 138.9, 144.6, 164.9. HRMS (EI): m/z calcd for C12H11ClO2: 222.0447; found: 222.0445. IR: 1416 (w), 1596 (w), 1723 (s), 2296 (m), 2968 (s), 3048 (s) cm-1.
3da: 1H NMR (300 MHz, CDCl3): δ = 3.77 (s, 3 H), 3.83 (s, 3 H), 6.70 (d, J = 15.2 Hz, 2 H), 6.90 (d, J = 7.0 Hz, 2 H), 7.32 (d, J = 15.2 Hz, 1 H), 7.42 (d, J = 7.0 Hz, 2 H). 13C NMR (75 MHz, CDCl3): δ = 51.7, 55.6, 114.6, 116.6, 123.8, 128.2, 129.4, 138.6, 145.1, 161.0, 165.1. HRMS (EI): m/z calcd for C13H13ClO3: 252.0553; found: 252.0555. IR: 1539 (w), 1584 (w), 1721 (s), 2296 (m), 2968 (s), 3048 (s) cm-1.
3ea: 1H NMR (300 MHz, CDCl3): δ = 2.02 (s, 3 H), 3.78 (s, 3 H), 5.43 (s, 1 H), 5.92 (s, 1 H), 6.24 (s, 1 H). 13C NMR (75 MHz, CDCl3): δ = 20.7, 51.9, 115.7, 122.9, 139.7, 146.1, 165.1. HRMS (EI): m/z calcd for C7H9Cl1O2: 160.0291; found: 160.0294. IR: 1417 (w), 1435 (w), 1596 (m), 1729 (s), 2296 (s), 2400 (w), 2572 (w), 2672 (w), 2976 (m), 3048 (s), 3416 (br), 3672 (w), 3736 (w), 3928 (m) cm-1.
3ga: 1H NMR (300 MHz, CDCl3): δ = 0.00 (s, 6 H), 0.84 (s, 9 H), 3.67 (s, 3 H), 4.28 (m, 2 H), 6.01 (s, 1 H), 6.34 (m, 1 H), 6.54 (td, J = 3.7, 14.7 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = -5.2, 18.6, 26.0, 26.1, 51.7, 62.6, 117.1, 126.4, 140.8, 144.3, 165.1. HRMS (FAB): m/z calcd for C12H23ClO3Si: 290.1105; found: 291.1185. IR: 1420 (br), 1460 (w), 1603 (s), 1640 (w), 1728 (s), 2304 (m), 2400 (w), 2512 (w), 2672 (w), 2848 (w), 2944 (s), 3056 (m), 3360 (br), 3672 (w), 3736 (w), 3936 (w) cm-1.