Subscribe to RSS
DOI: 10.1055/s-2008-1032075
Synthetic Application of Intramolecular Cyanoboration on the Basis of Removal and Conversion of a Tethering Group by Palladium-Catalyzed Retro-Allylation
Publication History
Publication Date:
23 January 2008 (online)
Abstract
A new synthetic strategy, involving utilization of a tethered intramolecular reaction with a removable tether, was demonstrated by the intramolecular cyanoboration-retro-allylation sequence.
Key words
alkenes - arylation - nitriles - palladium - retro-allylation
- For reviews of temporary-tethering strategy, see:
-
1a
Bols M.Skrydstrup T. Chem. Rev. 1995, 95: 1253 -
1b
Fensterbank L.Malacria M.Sieburth SM. Synthesis 1997, 813 -
1c
Gauthier DR.Zandi KS.Shea KJ. Tetrahedron 1998, 54: 2289 - For selected recent examples of silicon-tethered intramolecular reaction, see:
-
2a
Evans PA.Baum EW. J. Am. Chem. Soc. 2004, 126: 11150 -
2b
Chouraqui G.Petit M.Aubert C.Malacria M. Org. Lett. 2004, 6: 1519 -
2c
Someya H.Kondoh A.Sato A.Ohmiya H.Yorimitsu H.Oshima K. Synlett 2006, 3061 -
2d
Ohmura T.Furukawa H.Suginome M. J. Am. Chem. Soc. 2006, 128: 13366 -
2e
Chen C.-L.Sparks SM.Martin SF. J. Am. Chem. Soc. 2006, 128: 13696 -
2f
Kim YJ.Lee D. Org. Lett. 2006, 8: 5219 - For examples of boron-tethered intramolecular reaction, see:
-
3a
Shimada S.Osoda K.Narasaka K. Bull. Chem. Soc. Jpn. 1993, 66: 1254 -
3b
Nicolaou KC.Liu J.-J.Yang Z.Ueno H.Sorensen EJ.Claiborne CF.Guy RK.Hwang C.-K.Nakada M.Nantermet PG. J. Am. Chem. Soc. 1995, 117: 634 -
3c
Batey RA.Thadani AN.Lough AJ. J. Am. Chem. Soc. 1999, 121: 450 -
3d
Batey RA.Smil DV. Angew. Chem. Int. Ed. 1999, 38: 1798 -
3e
Micalizio GC.Schreiber SL. Angew. Chem. Int. Ed. 2002, 41: 3272 -
3f
Yamamoto Y.Ishii J.Nishiyama H.Itoh K. J. Am. Chem. Soc. 2005, 127: 9625 -
3g
Yamamoto A.Suginome M. J. Am. Chem. Soc. 2005, 127: 15706 -
4a
Hayashi S.Hirano K.Yorimitsu H.Oshima K. J. Am. Chem. Soc. 2006, 128: 2210 -
4b
Iwasaki M.Hayashi S.Hirano K.Yorimitsu H.Oshima K. J. Am. Chem. Soc. 2007, 129: 4463 -
4c
Hayashi S.Hirano K.Yorimitsu H.Oshima K. J. Am. Chem. Soc. 2007, 129: 12650 - For examples, see:
-
5a
Tamao K.Maeda K.Tanaka T.Ito Y. Tetrahedron Lett. 1988, 29: 6955 -
5b
Murakami M.Oike H.Sugawara M.Suginome M.Ito Y. Tetrahedron 1993, 49: 3933 -
5c
Suginome M.Kinugasa H.Ito Y. Tetrahedron Lett. 1994, 35: 8635 -
5d
Ojima I.Vidal E.Tzamarioudaki M.Matsuda I. J. Am. Chem. Soc. 1995, 117: 6797 -
5e
O’Malley SJ.Leighton JL. Angew. Chem. Int. Ed. 2001, 40: 2915 -
5f
Denmark SE.Pan W. Org. Lett. 2002, 4: 4163 -
5g
Trost BM.Ball ZT. J. Am. Chem. Soc. 2003, 125: 30 -
6a
Suginome M.Yamamoto A.Murakami M. J. Am. Chem. Soc. 2003, 125: 6358 -
6b
Suginome M.Yamamoto A.Murakami M. J. Organomet. Chem. 2005, 690: 5300 - 7 We have also developed intermolecular cyanoboration of alkynes, see:
Suginome M.Yamamoto A.Murakami M. Angew. Chem. Int. Ed. 2005, 44: 2380 - 8
Littke AF.Dai C.Fu GC. J. Am. Chem. Soc. 2000, 122: 4020
References and Notes
General Procedure for the Palladium-Catalyzed Retro-Allylative Coupling of 2 with 3 (Tables 1-3): Cesium carbonate was dried in vacuo by heating with a heat gun prior to use. Under a nitrogen atmosphere, a mixture of Pd(OAc)2 (0.010 mmol), PCy3 or PPh3 (0.020 mmol), Cs2CO3 (0.24 mmol), 2 (0.20 mmol), and 3 (0.24 mmol) was heated at 110 °C. The reaction was monitored by GC. Heating was stopped as soon as 2 was consumed, since prolonged heating led to a drop in the product yield. Volatiles were removed and the crude product was purified by PTLC.
(E)-3-(4-Methoxyphenyl)-4-(4-methylphenyl)but-2-enenitrile (4a): 1H NMR (400 MHz, CDCl3): δ = 7.38 (d, J = 8.8 Hz, 2 H), 7.02-7.12 (m, 4 H), 6.83 (d, J = 8.8 Hz, 2 H), 5.65 (s, 1 H), 4.16 (s, 2 H), 3.80 (s, 3 H), 2.28 (s, 3 H). 13C NMR (126 MHz, CDCl3): δ = 161.6, 161.2, 136.3, 134.0, 129.5, 129.4 (2 × C), 128.20 (2 × C), 128.18 (2 × C), 118.0, 114.1 (2 × C), 94.8, 55.3, 39.0, 21.0. IR (neat): 2211 (CN), 1605 (C=C) cm-1. LRMS (EI): m/z = 263 (100) [M+], 248 (18), 158 (38), 133 (40), 105 (41). HRMS (EI): m/z [M+] calcd for C18H17NO: 263.1310; found: 263.1311. The geometry of the double bond was assigned as E by NOE experiments.
(E)-4-(2,6-Dimethylphenyl)-3-(4-methoxyphenyl)but-2-enenitrile (4b): 1H NMR (400 MHz, CDCl3): δ = 7.06-7.11 (m, 3 H), 6.98-7.03 (m, 2 H), 6.78 (d, J = 8.8 Hz, 2 H), 5.49 (t, J = 1.2 Hz, 1 H), 4.17 (d, J = 1.2 Hz, 2 H), 3.78 (s, 3 H), 2.29 (s, 6 H). 13C NMR (126 MHz, CDCl3): δ = 162.7, 160.6, 137.5 (2 × C), 133.5, 131.1, 128.3 (2 × C), 127.8 (2 × C), 127.1, 116.6, 113.7 (2 × C), 96.3, 55.2, 35.7, 20.5 (2 × C). IR (KBr): 2207 (CN), 1605 (C=C) cm-1. LRMS (EI): m/z = 277 (80) [M+], 237 (100), 119 (40). HRMS (EI): m/z [M+] calcd for C19H19NO: 277.1467; found: 277.1474. The geometry of the double bond was assigned as E by NOE experiments.
General Procedure for the Palladium-Catalyzed Protonative Retro-Allylation of 2 (Entry 9 in Table 1 and Table 4): Cesium carbonate was dried in vacuo by heating with a heat gun prior to use. Under a nitrogen atmosphere, a mixture of Pd(OAc)2 (0.010 mmol), P(OPh)3 (0.020 mmol), Cs2CO3 (0.24 mmol), and 2 (0.20 mmol) was heated at 110 °C. The reaction was monitored by GC. After consumption of 2, volatiles were removed and the crude product was purified by PTLC.
(E)-3-(4-Methoxyphenyl)but-2-enenitrile (5a): 1H NMR (400 MHz, CDCl3): δ = 7.41-7.45 (m, 2 H), 6.89-6.93 (m, 2 H), 5.55 (d, J = 0.8 Hz, 1 H), 3.85 (s, 3 H), 2.45 (d, J = 0.8 Hz, 3 H). 13C NMR (126 MHz, CDCl3): δ = 161.3, 158.8, 130.4, 127.3 (2 × C), 118.1, 114.1 (2 × C), 93.2, 55.4, 20.0. IR (KBr): 2205 (CN), 1603 (C=C) cm-1. LRMS (EI): m/z = 173 (100) [M+], 158 (41), 103 (35). HRMS (EI): m/z [M+] calcd for C11H11NO: 173.0841; found: 173.0841. The geometry of the double bond was assigned as E by NOE experiments.