Subscribe to RSS
DOI: 10.1055/s-2008-1032092
An Efficient Procedure for the 1,3-Transposition of Allylic Alcohols Based on Lithium Naphthalenide Induced Reductive Elimination of Epoxy Mesylates
Publication History
Publication Date:
12 February 2008 (online)
Abstract
An efficient protocol for the 1,3-transposition of allylic alcohols has been developed. The method is based on the pretransformation of allylic alcohols into the corresponding epoxy mesylates, followed by the reductive elimination of the resulting epoxy mesylates by using lithium naphthalenide (LN) as a reducing agent.
Key words
allylic alcohols - 1,3-transposition - epoxy mesylates - reductive elimination - lithium naphthalenide
- 1
Larock RC. Comprehensive Organic Transformation 2nd ed.: Wiley-VCH; Weinheim: 1999. p.227-228 -
2a
Pepito AS.Dittmer DC. J. Org. Chem. 1994, 59: 4311 -
2b
Dittmer DC.Discordia RP.Zhang Y.Murphy CK.Kumar A.Pepito AS.Wang Y. J. Org. Chem. 1993, 58: 718 -
3a
Lee E.Lee YR.Moon B.Kwon O.Shim MS.Yun JS. J. Org. Chem. 1994, 59: 1444 -
3b
Mori K.Ueda H. Tetrahedron 1981, 37: 2581 - 4
Yasuda A.Yamamoto H.Nozaki H. Tetrahedron Lett. 1976, 2621 - For some examples, see:
-
5a
Marshall JA.Jenson TM. J. Org. Chem. 1984, 49: 1707 -
5b
Paquette LA.Ham WH. J. Am. Chem. Soc. 1987, 109: 3025 -
5c
Marshall JA.Robinson ED.Adams RD. Tetrahedron Lett. 1988, 29: 4913 -
5d
Marshall JA.Robinson ED.Robinson ED.Lebreton J. J. Org. Chem. 1990, 55: 227 -
5e
Kocienski PJ.Tideswell J. Synth. Commun. 1979, 9: 411 -
5f
Yasuda H.Yamamoto H.Nozaki H. Bull. Chem. Soc. Jpn. 1979, 52: 1757 - For some examples of using LN as a reducing reagent, see:
-
6a
Guijarro A.Roman DJ.Yus M. Tetrahedron 1993, 49: 469 -
6b
Guijarro A.Yus M. Tetrahedron Lett. 1994, 35: 253 -
6c
Kondo Y.Murata N.Sakamoto T. Heterocycles 1994, 37: 1467 -
6d
Zhu JL.Shia KS.Liu HJ. Chem. Commun. 2000, 1599 -
6e
Chien CF.Wu JD.Ly TW.Shia KS.Liu HJ. Chem. Commun. 2002, 248 - 7
Bannai K.Tanaka T.Okamura N.Hazato A.Sugiura S.Manabe K.Tomimori K.Kurozumi S. Tetrahedron Lett. 1986, 27: 6353 - 8
Kaneti I. Tetrahedron 1986, 42: 4017 - 11 For preparing a stock solution of LN, see:
Liu HJ.Yip J.Shia KS. Tetrahedron Lett. 1997, 38: 2253 -
12a
Sharpless KB.Michaelson RC. J. Am. Chem. Soc. 1973, 95: 6136 -
12b
Sharpless KB.Hanson RM. J. Org. Chem. 1986, 51: 1922 - 13
Mordini A.Rayana EB.Margot C.Schlosser M. Tetrahedron 1990, 46: 2401 -
14a
Magnusson G.Thoren SJ. J. Org. Chem. 1973, 38: 1380 -
14b
Jia YX.Li X.Wu B.Zhao XZ.Tu YQ. Tetrahedron 2002, 58: 1697 -
14c
Motherwell WB.Bingham MJ.Pothier J.Six Y. Tetrahedron 2004, 60: 3231 -
14d
Brownstein S.Burton GW.Hughes L.Ingold KU. J. Org. Chem. 1989, 54: 560 -
14e
Roush WR.Straub JA.Brown RJ. J. Org. Chem. 1987, 52: 5127 -
14f
Kumar A.Dittmer DC. Tetrahedron Lett. 1994, 35: 5583 -
14g
Alcaraz L.Cridland A.Kinchin E. Org. Lett. 2001, 3: 4051 -
14h
Martin VS.Ode JM.Jesus M.Palazon JM.Soler MA. Tetrahedron: Asymmetry 1992, 3: 573 -
14i
Carvero RM.Gonzalez-Sierra M.Labadie GR. Helv. Chim. Acta 2003, 86: 2741
References and Notes
The stereochemistry of 1a was elucidated based on the coupling constant in the 1H NMR spectrum.
10Typical Procedure for the Reductive Elimination of Epoxy Mesylates: A stock solution of LN [11] in THF (0.365 M, 20.4 mL, 7.43 mmol) precooled to -25 °C was quickly added by syringe to a solution of 1a (580 mg, 2.48 mmol) in anhyd THF (5 mL) at -25 °C under a nitrogen atmosphere. The resulting dark mixture was stirred at -25 °C for 10 min, then was quenched with H2O (10 mL) and extracted with EtOAc (2 × 20 mL). The combined extracts were washed with sat. aq NaCl (10 mL), dried with Na2SO4 and concentrated. Purification by chromatography on silica gel (hexane; EtOAc-hexane, 1:10) afforded 1,5,5-trimethyl-cyclohex-2-enol (2a) as a viscous oil (291 mg, 84%). IR (KBr): 3490, 1675 cm-1. 1H NMR (400 MHz, CDCl3): δ = 5.66 (dt, J = 1.5, 9.9 Hz, 1 H), 5.69 (d, J = 9.9 Hz, 1 H), 1.79 (dd, J = 1.5, 15.1 Hz, 1 H), 1.77 (dd, J = 1.5, 15.1 Hz, 1 H), 1.64 (d, J = 14.0 Hz, 1 H), 1.53 (d, J = 14.0 Hz, 1 H), 1.24 (s, 3 H), 1.02 (s, 3 H), 0.93 (s, 3 H). 13C NMR (100 MHz, CDCl3): δ = 132.4, 126.9, 68.2, 50.4, 38.9, 31.0, 30.9, 29.8, 27.6. HRMS (EI): m/z [M]+ calcd for C9H16O: 140.1201; found: 140.1204.