Abstract
An efficient protocol for the 1,3-transposition of allylic alcohols has been developed. The method is based on the pretransformation of allylic alcohols into the corresponding epoxy mesylates, followed by the reductive elimination of the resulting epoxy mesylates by using lithium naphthalenide (LN) as a reducing agent.
Key words
allylic alcohols - 1,3-transposition - epoxy mesylates - reductive elimination - lithium naphthalenide
References and Notes
1
Larock RC.
Comprehensive Organic Transformation
2nd ed.:
Wiley-VCH;
Weinheim:
1999.
p.227-228
2a
Pepito AS.
Dittmer DC.
J. Org. Chem.
1994,
59:
4311
2b
Dittmer DC.
Discordia RP.
Zhang Y.
Murphy CK.
Kumar A.
Pepito AS.
Wang Y.
J. Org. Chem.
1993,
58:
718
3a
Lee E.
Lee YR.
Moon B.
Kwon O.
Shim MS.
Yun JS.
J. Org. Chem.
1994,
59:
1444
3b
Mori K.
Ueda H.
Tetrahedron
1981,
37:
2581
4
Yasuda A.
Yamamoto H.
Nozaki H.
Tetrahedron Lett.
1976,
2621
For some examples, see:
5a
Marshall JA.
Jenson TM.
J. Org. Chem.
1984,
49:
1707
5b
Paquette LA.
Ham WH.
J. Am. Chem. Soc.
1987,
109:
3025
5c
Marshall JA.
Robinson ED.
Adams RD.
Tetrahedron Lett.
1988,
29:
4913
5d
Marshall JA.
Robinson ED.
Robinson ED.
Lebreton J.
J. Org. Chem.
1990,
55:
227
5e
Kocienski PJ.
Tideswell J.
Synth. Commun.
1979,
9:
411
5f
Yasuda H.
Yamamoto H.
Nozaki H.
Bull. Chem. Soc. Jpn.
1979,
52:
1757
For some examples of using LN as a reducing reagent, see:
6a
Guijarro A.
Roman DJ.
Yus M.
Tetrahedron
1993,
49:
469
6b
Guijarro A.
Yus M.
Tetrahedron Lett.
1994,
35:
253
6c
Kondo Y.
Murata N.
Sakamoto T.
Heterocycles
1994,
37:
1467
6d
Zhu JL.
Shia KS.
Liu HJ.
Chem. Commun.
2000,
1599
6e
Chien CF.
Wu JD.
Ly TW.
Shia KS.
Liu HJ.
Chem. Commun.
2002,
248
7
Bannai K.
Tanaka T.
Okamura N.
Hazato A.
Sugiura S.
Manabe K.
Tomimori K.
Kurozumi S.
Tetrahedron Lett.
1986,
27:
6353
8
Kaneti I.
Tetrahedron
1986,
42:
4017
9 The stereochemistry of 1a was elucidated based on the coupling constant in the 1 H NMR spectrum.
10
Typical Procedure for the Reductive Elimination of Epoxy Mesylates : A stock solution of LN
[11 ]
in THF (0.365 M, 20.4 mL, 7.43 mmol) precooled to -25 °C was quickly added by syringe to a solution of 1a (580 mg, 2.48 mmol) in anhyd THF (5 mL) at -25 °C under a nitrogen atmosphere. The resulting dark mixture was stirred at -25 °C for 10 min, then was quenched with H2 O (10 mL) and extracted with EtOAc (2 × 20 mL). The combined extracts were washed with sat. aq NaCl (10 mL), dried with Na2 SO4 and concentrated. Purification by chromatography on silica gel (hexane; EtOAc-hexane, 1:10) afforded 1,5,5-trimethyl-cyclohex-2-enol (2a ) as a viscous oil (291 mg, 84%). IR (KBr): 3490, 1675 cm-1 . 1 H NMR (400 MHz, CDCl3 ): δ = 5.66 (dt, J = 1.5, 9.9 Hz, 1 H), 5.69 (d, J = 9.9 Hz, 1 H), 1.79 (dd, J = 1.5, 15.1 Hz, 1 H), 1.77 (dd, J = 1.5, 15.1 Hz, 1 H), 1.64 (d, J = 14.0 Hz, 1 H), 1.53 (d, J = 14.0 Hz, 1 H), 1.24 (s, 3 H), 1.02 (s, 3 H), 0.93 (s, 3 H). 13 C NMR (100 MHz, CDCl3 ): δ = 132.4, 126.9, 68.2, 50.4, 38.9, 31.0, 30.9, 29.8, 27.6. HRMS (EI): m /z [M]+ calcd for C9 H16 O: 140.1201; found: 140.1204.
11 For preparing a stock solution of LN, see: Liu HJ.
Yip J.
Shia KS.
Tetrahedron Lett.
1997,
38:
2253
12a
Sharpless KB.
Michaelson RC.
J. Am. Chem. Soc.
1973,
95:
6136
12b
Sharpless KB.
Hanson RM.
J. Org. Chem.
1986,
51:
1922
13
Mordini A.
Rayana EB.
Margot C.
Schlosser M.
Tetrahedron
1990,
46:
2401
14a
Magnusson G.
Thoren SJ.
J. Org. Chem.
1973,
38:
1380
14b
Jia YX.
Li X.
Wu B.
Zhao XZ.
Tu YQ.
Tetrahedron
2002,
58:
1697
14c
Motherwell WB.
Bingham MJ.
Pothier J.
Six Y.
Tetrahedron
2004,
60:
3231
14d
Brownstein S.
Burton GW.
Hughes L.
Ingold KU.
J. Org. Chem.
1989,
54:
560
14e
Roush WR.
Straub JA.
Brown RJ.
J. Org. Chem.
1987,
52:
5127
14f
Kumar A.
Dittmer DC.
Tetrahedron Lett.
1994,
35:
5583
14g
Alcaraz L.
Cridland A.
Kinchin E.
Org. Lett.
2001,
3:
4051
14h
Martin VS.
Ode JM.
Jesus M.
Palazon JM.
Soler MA.
Tetrahedron: Asymmetry
1992,
3:
573
14i
Carvero RM.
Gonzalez-Sierra M.
Labadie GR.
Helv. Chim. Acta
2003,
86:
2741