Subscribe to RSS
DOI: 10.1055/s-2008-1032141
Reduction of Esters to Ethers Utilizing the Powerful Lewis Acid BF2OTf·OEt2
Publication History
Publication Date:
31 January 2008 (online)
Abstract
The direct reduction of esters to their corresponding ethers has been achieved using the Lewis acid BF2OTf·OEt2 generated via anionic redistribution between TMSOTf and BF3·OEt2 with triethylsilane acting as the reducing agent. Isolated yields of up to 71% have been obtained with the corresponding alcohol as the only side product.
Key words
boron - esters - ethers - Lewis acid - reductions
-
1a
Dilman AD.Ioffe SL. Chem. Rev. 2003, 103: 733 -
1b
Zhao H.Gorman JS.Pagenkopf BL. Org. Lett. 2006, 8: 4379 -
1c
Mahrwald R. Chem. Rev. 1999, 99: 1095 -
1d
Corma A.Garcia H. Chem. Rev. 2002, 102: 3837 -
1e
Zhao H.Engers DW.Morales CL.Pagenkopf BL. Tetrahedron 2007, 63: 8774 - 2
Snider BB. In Comprehensive Organic Chemistry Vol. 2:Trost BM.Fleming I. Pergamon Press; Oxford: 1991. Chap. 2.1. p.527-561 - 3
Konig K.Neumann WP. Tetrahedron Lett. 1967, 495 -
4a
Kagan HB.Riant O. Chem. Rev. 1992, 92: 1007 -
4b
Pindur U.Lutz G.Otto C. Chem. Rev. 1993, 93: 741 - 5
Carreira EM. In Modern Carbonyl ChemistryOtera J. Wiley; Weinheim: 2000. Chap. 8. p.227 - 6 During the preparation of this manuscript, Sakai reported the one-pot synthesis of unsymmetrical ethers via deoxygenation of esters using an InBr3/Et3SiH catalytic system:
Sakai N.Moriya T.Konakahara T. J. Org. Chem. 2007, 72: 5920 - It is important to note that after its original discovery,7a Gray used this reductive cleavage method to quantitatively identify the positions of substitution of acetyl, butyryl, and propionyl groups in cellulose derivatives,7b,c see:
-
7a
Sherman JS.Gray GR. Carbohydr. Res. 1992, 231: 221 -
7b
Lee CK.Gray GR. Carbohydr. Res. 1995, 269: 167 -
7c
Yu N.Gray GR. Carbohydr. Res. 1998, 312: 225 -
7d
Yu N.Gray GR. Carbohydr. Res. 1998, 313: 29 -
8a
Fuhrmann E.Talbiersky J. Org. Process Res. Dev. 2005, 9: 206 -
8b
Paul S.Gupta M. Tetrahedron Lett. 2004, 45: 8825 - 9
Jun J.-G.Gray GR. Carbohydr. Res. 1987, 163: 247 - 10
Hoye TR.Eklove BM.Ryba TD.Voloshin M.Yao L. Org. Lett. 2004, 6: 953 - 11
Myers EL.Butts CP.Aggarwal VK. Chem. Commun. 2006, 4434 - 12
Myers EL.de Vries JG.Aggarwal VK. Angew. Chem. Int. Ed. 2007, 46: 1893 - 15
Barr KJ.Berk SC.Buchwald SL. J. Org. Chem. 1994, 59: 4323 -
16a
Jun J.-G.Ha TH.Kim D.-W. Tetrahedron Lett. 1994, 35: 1235 -
16b Acetic acid 3-phenylpropyl ester:
Kobayashi K.Watahiki T.Oriyama T. Synthesis 2003, 484 -
16c (3-Ethoxypropyl)benzene:
Matsubara K.Iura T.Maki T.Nagashima H. J. Org. Chem. 2002, 67: 4985 -
16d Triethyl(3-phenylpropoxy)silane:
Hayashi M.Matsuura Y.Watanabe Y. Tetrahedron Lett. 2004, 45: 1409 -
16e Isobutyric acid 3-phenylpropyl ester, 2,2-dimethyl-propionic acid 3-phenylpropyl ester:
Werner T.Barrett A. J. Org. Chem. 2006, 71: 4302 -
16f Formic acid 3-phenyl-propyl ester:
Luca LD.Giacomelli G.Porcheddu A. J. Org. Chem. 2002, 67: 5152 -
16g (3-Methoxypropyl)benzene:
Bodwell GJ.Li J.Miller DO. Tetrahedron 1999, 55: 12939 -
16h 3-Phenylpropionic acid methyl ester:
Crosignani S.White PD.Linclau B. J. Org. Chem. 2004, 69: 5897 -
16i 3-Phenylpropionic acid 3-phenylpropyl ester:
Kopecky DJ.Rychnovsky SD. J. Org. Chem. 2000, 65: 191 -
16j
Mizuno K.Ogawa J.Otsugi Y. Chem. Lett. 1981, 741 -
16k
Kato J.-I.Iwasawa N.Mukaiyama T. Chem. Lett. 1985, 743 -
16l
Harnet AM.He HS.Toy PH.Flynn DL.Hanson PR. J. Am. Chem. Soc. 2005, 127: 52 -
17a
Schmidbaur H.Sechser L.Schmidt M. J. Organomet. Chem. 1968, 15: 77 -
17b
Krolikiewicz K.Bennua B. Chem. Ber. 1981, 114: 1234
References
NMR analysis of the mixture showed the regeneration of BF3·OEt2 as well as peaks tentatively assigned to BF(OTf)2·OEt2, and B(OTf)3·OEt2: 1H NMR showed two new etherate peaks downfield of BF2OTf·OEt2 [δ = 4.74 (q, J = 7.0 Hz, 4 H), 1.65 (t, J = 7.0 Hz, 6 H), and 4.61 (q, J = 6.9 Hz, 4 H), 1.60 (t, J = 6.9 Hz, 6 H)]. 11B NMR showed two new singlets upfield of the BF2OTf·OEt2 (δ = -1.54, -2.28). 19F NMR showed two new singlets in the triflate region (δ = -75.47, -7.40).
14The 19F NMR of a reaction run under conditions A (see footnote a, Table [2] ) showed the presence of a peak at -178 ppm suggesting the formation of triethylsilyl fluoride, which is likely responsible for the formation of the triethylsilyl ether product. The signal at -178 ppm was absent under conditions B.