Abstract
The direct reduction of esters to their corresponding ethers has been achieved using
the Lewis acid BF2 OTf·OEt2 generated via anionic redistribution between TMSOTf and BF3 ·OEt2 with triethylsilane acting as the reducing agent. Isolated yields of up to 71% have
been obtained with the corresponding alcohol as the only side product.
Key words
boron - esters - ethers - Lewis acid - reductions
References
<A NAME="RM06307SS-1A">1a </A>
Dilman AD.
Ioffe SL.
Chem. Rev.
2003,
103:
733
<A NAME="RM06307SS-1B">1b </A>
Zhao H.
Gorman JS.
Pagenkopf BL.
Org. Lett.
2006,
8:
4379
<A NAME="RM06307SS-1C">1c </A>
Mahrwald R.
Chem. Rev.
1999,
99:
1095
<A NAME="RM06307SS-1D">1d </A>
Corma A.
Garcia H.
Chem. Rev.
2002,
102:
3837
<A NAME="RM06307SS-1E">1e </A>
Zhao H.
Engers DW.
Morales CL.
Pagenkopf BL.
Tetrahedron
2007,
63:
8774
<A NAME="RM06307SS-2">2 </A>
Snider BB. In
Comprehensive Organic Chemistry
Vol. 2:
Trost BM.
Fleming I.
Pergamon Press;
Oxford:
1991.
Chap. 2.1.
p.527-561
<A NAME="RM06307SS-3">3 </A>
Konig K.
Neumann WP.
Tetrahedron Lett.
1967,
495
<A NAME="RM06307SS-4A">4a </A>
Kagan HB.
Riant O.
Chem. Rev.
1992,
92:
1007
<A NAME="RM06307SS-4B">4b </A>
Pindur U.
Lutz G.
Otto C.
Chem. Rev.
1993,
93:
741
<A NAME="RM06307SS-5">5 </A>
Carreira EM. In
Modern Carbonyl Chemistry
Otera J.
Wiley;
Weinheim:
2000.
Chap. 8.
p.227
<A NAME="RM06307SS-6">6 </A> During the preparation of this manuscript, Sakai reported the one-pot synthesis
of unsymmetrical ethers via deoxygenation of esters using an InBr3 /Et3 SiH catalytic system:
Sakai N.
Moriya T.
Konakahara T.
J. Org. Chem.
2007,
72:
5920
It is important to note that after its original discovery,7a Gray used this reductive cleavage method to quantitatively identify the positions
of substitution of acetyl, butyryl, and propionyl groups in cellulose derivatives,7b,c see:
<A NAME="RM06307SS-7A">7a </A>
Sherman JS.
Gray GR.
Carbohydr. Res.
1992,
231:
221
<A NAME="RM06307SS-7B">7b </A>
Lee CK.
Gray GR.
Carbohydr. Res.
1995,
269:
167
<A NAME="RM06307SS-7C">7c </A>
Yu N.
Gray GR.
Carbohydr. Res.
1998,
312:
225
<A NAME="RM06307SS-7D">7d </A>
Yu N.
Gray GR.
Carbohydr. Res.
1998,
313:
29
<A NAME="RM06307SS-8A">8a </A>
Fuhrmann E.
Talbiersky J.
Org. Process Res. Dev.
2005,
9:
206
<A NAME="RM06307SS-8B">8b </A>
Paul S.
Gupta M.
Tetrahedron Lett.
2004,
45:
8825
<A NAME="RM06307SS-9">9 </A>
Jun J.-G.
Gray GR.
Carbohydr. Res.
1987,
163:
247
<A NAME="RM06307SS-10">10 </A>
Hoye TR.
Eklove BM.
Ryba TD.
Voloshin M.
Yao L.
Org. Lett.
2004,
6:
953
<A NAME="RM06307SS-11">11 </A>
Myers EL.
Butts CP.
Aggarwal VK.
Chem. Commun.
2006,
4434
<A NAME="RM06307SS-12">12 </A>
Myers EL.
de Vries JG.
Aggarwal VK.
Angew. Chem. Int. Ed.
2007,
46:
1893
<A NAME="RM06307SS-13">13 </A>
NMR analysis of the mixture showed the regeneration of BF3 ·OEt2 as well as peaks tentatively assigned to BF(OTf)2 ·OEt2 , and B(OTf)3 ·OEt2 : 1 H NMR showed two new etherate peaks downfield of BF2 OTf·OEt2 [δ = 4.74 (q, J = 7.0 Hz, 4 H), 1.65 (t, J = 7.0 Hz, 6 H), and 4.61 (q, J = 6.9 Hz, 4 H), 1.60 (t, J = 6.9 Hz, 6 H)]. 11 B NMR showed two new singlets upfield of the BF2 OTf·OEt2 (δ = -1.54, -2.28). 19 F NMR showed two new singlets in the triflate region (δ = -75.47, -7.40).
<A NAME="RM06307SS-14">14 </A>
The 19 F NMR of a reaction run under conditions A (see footnote a, Table
[2 ]
) showed the presence of a peak at -178 ppm suggesting the formation of triethylsilyl
fluoride, which is likely responsible for the formation of the triethylsilyl ether
product. The signal at -178 ppm was absent under conditions B.
<A NAME="RM06307SS-15">15 </A>
Barr KJ.
Berk SC.
Buchwald SL.
J. Org. Chem.
1994,
59:
4323
<A NAME="RM06307SS-16A">16a </A>
Jun J.-G.
Ha TH.
Kim D.-W.
Tetrahedron Lett.
1994,
35:
1235
<A NAME="RM06307SS-16B">16b </A> Acetic acid 3-phenylpropyl ester:
Kobayashi K.
Watahiki T.
Oriyama T.
Synthesis
2003,
484
<A NAME="RM06307SS-16C">16c </A> (3-Ethoxypropyl)benzene:
Matsubara K.
Iura T.
Maki T.
Nagashima H.
J. Org. Chem.
2002,
67:
4985
<A NAME="RM06307SS-16D">16d </A> Triethyl(3-phenylpropoxy)silane:
Hayashi M.
Matsuura Y.
Watanabe Y.
Tetrahedron Lett.
2004,
45:
1409
<A NAME="RM06307SS-16E">16e </A> Isobutyric acid 3-phenylpropyl ester, 2,2-dimethyl-propionic acid 3-phenylpropyl ester:
Werner T.
Barrett A.
J. Org. Chem.
2006,
71:
4302
<A NAME="RM06307SS-16F">16f </A> Formic acid 3-phenyl-propyl ester:
Luca LD.
Giacomelli G.
Porcheddu A.
J. Org. Chem.
2002,
67:
5152
<A NAME="RM06307SS-16G">16g </A> (3-Methoxypropyl)benzene:
Bodwell GJ.
Li J.
Miller DO.
Tetrahedron
1999,
55:
12939
<A NAME="RM06307SS-16H">16h </A> 3-Phenylpropionic acid methyl ester:
Crosignani S.
White PD.
Linclau B.
J. Org. Chem.
2004,
69:
5897
<A NAME="RM06307SS-16I">16i </A> 3-Phenylpropionic acid 3-phenylpropyl ester:
Kopecky DJ.
Rychnovsky SD.
J. Org. Chem.
2000,
65:
191
<A NAME="RM06307SS-16J">16j </A>
Mizuno K.
Ogawa J.
Otsugi Y.
Chem. Lett.
1981,
741
<A NAME="RM06307SS-16K">16k </A>
Kato J.-I.
Iwasawa N.
Mukaiyama T.
Chem. Lett.
1985,
743
<A NAME="RM06307SS-16L">16l </A>
Harnet AM.
He HS.
Toy PH.
Flynn DL.
Hanson PR.
J. Am. Chem. Soc.
2005,
127:
52
<A NAME="RM06307SS-17A">17a </A>
Schmidbaur H.
Sechser L.
Schmidt M.
J. Organomet. Chem.
1968,
15:
77
<A NAME="RM06307SS-17B">17b </A>
Krolikiewicz K.
Bennua B.
Chem. Ber.
1981,
114:
1234