Planta Med 2008; 74(4): 417-421
DOI: 10.1055/s-2008-1034328
Natural Products Chemistry
Original Paper
© Georg Thieme Verlag KG Stuttgart · New York

Antiplasmodial Phenolic compounds from Piptadenia pervillei

Voahangy Ramanandraibe1 , Philippe Grellier2 , Marie-Thérèse Martin3 , Alexandre Deville4 , Roger Joyeau4 , David Ramanitrahasimbola1 , Elisabeth Mouray2 , Philippe Rasoanaivo1 , Lengo Mambu4
  • 1Laboratoire de Bio-thérapeutique, Institut Malgache de Recherches Appliquées, Antananarivo, Madagascar
  • 2USM 0504 Biologie Fonctionnelle des Protozoaires, Département Régulations, Développement et Diversité Moléculaire, Muséum National d’Histoire Naturelle, Paris, France
  • 3Institut de Chimie des Substances Naturelles, CNRS, Gif-sur-Yvette, France
  • 4USM 0502-UMR 5154 CNRS Chimie et Biochimie des Substances Naturelles, Département Régulations, Développement et Diversité Moléculaire, Muséum National d’Histoire Naturelle, Paris, France
Weitere Informationen

Publikationsverlauf

Received: September 11, 2007 Revised: January 25, 2008

Accepted: February 6, 2008

Publikationsdatum:
11. März 2008 (online)

Abstract

Piptadenia pervillei Vatke (Fabaceae) was selected from a screening programme devoted to the search of naturally-occuring antimalarial compounds from plants of Madagascar. Bioassay-guided fractionation of the ethyl acetate extract of the leaves led to the isolation of four phenolic compounds, (+)-catechin (1), (+)-catechin 5-gallate (2), (+)-catechin 3-gallate (3) and ethyl gallate (4). Structures were determined by NMR and mass spectroscopy. Compounds 2 and 3 displayed the highest in vitro activity against the chloroquine-resistant strain FcB1 of Plasmodium falciparum with IC50 values of 1.2 μM and 1.0 μM, respectively, and no significant cytotoxicity against the human embryonic lung cells MRC-5 was measured (IC50 values > 75 μM). Five analogues (5 - 9) of (+)-catechin 5-gallate (2) were synthesized and evaluated for their antiplasmodial activity.

References

  • 1 Hyde J E. Mechanisms of resistance of Plasmodium falciparum to antimalarial drugs.  Microbes Infect. 2002;  4 165-74
  • 2 Brinner K M, Kim J M, Habashita H, Gluzman I Y, Goldberg D E, Ellman J A. Novel and potent antimalarial agents.  Bioorg Med Chem. 2001;  10 3649-61
  • 3 Sullivan D J. Theories on malaria pigment formation and quinoline action.  Int J Parasitol. 2002;  32 1645-53
  • 4 Fitch C D. Ferriprotoporphyrin IX, phospholipids, and the antimalarial actions of quinoline drugs.  Life Sci. 2004;  74 1957-72
  • 5 Rasoanaivo P, Ramanitrahasimbola D, Rafatro H, Rakotondramanana D, Robijaona B, Rakotozafy A. et al . Screening extracts of Madagascan plants in search of antiplasmodial compounds.  Phytother Res. 2004;  18 742-7
  • 6 Villiers J F. Subfamily mimosoideae. In: Du Puy DJ, editor The Leguminosae of Madagascar. Kew; Royal Botanical Gardens 2002: 154-293
  • 7 Zelle R E, McClellan W J. A simple, high-yielding method for the methylenation of catechols.  Tetrahedron Lett. 1991;  32 2461-4
  • 8 Cren-Olivé C, Lebrun S, Rolando C. An efficient synthesis of the four mono methylated isomers of (+)-catechin including the major metabolites and of some dimethylated and trimethylated analogues through selective protection of the catechol ring. J Chem Soc Perkin Trans I 2002: 821-30
  • 9 Tückmantel W, Kozikowski A P, Romanczyk L J. Studies in polyphenol chemistry and bioactivity. 1. Preparation of building blocks from (+)-catechin. Procyanidin formation. Synthesis of the cancer cell growth inhibitor, 3-O-galloyl-(2R,3R)-epicatechin 4β,8-[3-O-galloyl-(2R,3R)-epicatechin].  J Am Chem Soc. 1999;  121 12 073-81
  • 10 Frappier F, Jossang A, Soudon J, Calvo F, Rasoanaivo P, Ratsimamanga-Urverg S. et al . Bisbenzylisoquinolines as modulators of chloroquine resistance in Plasmodium falciparum and multidrug resistance in tumor cells.  Antimicrob Agents Chemother. 1996;  40 1476-81
  • 11 Davies A L, Cai Y, Davies A P, Lewis J R. 1H and 13C NMR assignments of some green tea polyphenols.  Magn Reson Chem. 1996;  34 887-90
  • 12 Tanaka T, Nonaka G I, Nishioka I. 7-O-Galloyl-(+)-catechin and 3-O-Galloylprocyanidin B-3 from Sanguisorba officinalis. .  Phytochemistry. 1983;  22 2575-8
  • 13 Malan E. Derivatives of (+)-catechin-5-gallate from the bark of Acacia nilotica.  Phytochemistry. 1991;  30 2737-9
  • 14 Calixto J B, Santos A RS, Cechinel V, Yunes R A. A review of the plants of the genus Phyllanthus: their chemistry, pharmacology, and therapeutic potential.  Med Res Rev. 1998;  18 225-58
  • 15 Jankun J, Selman S H, Swiercz R, Skrzypczak-Jankun E. Why drinking green tea could prevent cancer.  Nature. 1997;  387 561
  • 16 Fraga C G, Martino V S, Ferraro G E, Coussio J D, Boveris A. Flavonoids as antioxidants evaluated by in vitro and in situ liver chemiluminescence.  Biochem Pharmacol. 1987;  36 717-20
  • 17 Kayser O, Kiderlin A F, Croft S L. Natural products as potential antiparasitic drugs. In: Atta-ur-Rahman, editor. Studies in natural products chemistry. Bioactive natural products (Part G).  Amsterdam:. Elsevier;  2002 26, 779-848
  • 18 Paveto C, Güida M C, Esteva M I, Martino V, Coussio J, Flawià M M. et al . Anti-Trypanosoma cruzi activity of Green tea (Camellia sinensis) catechins.  Antimicrob Agents Chemother. 2004;  48 69-74
  • 19 Kolodziej H, Kayser O, Kiderlen A F, Ito H, Hatano T, Yoshida T. et al . Proanthocyanidins and related compounds: antileishmanial activity and modulatory effects on nitric oxid and tumor necrosis factor-α-release in the murine macrophage-like cell line RAW 264.  Biol Pharm Bull. 2001;  24 1016-21
  • 20 Dickii J, Njifutie N, Foyere J A, Basco L , Ringwald P. In vitro antimalarial activity of limonoids from Khaya grandifolia C.D.C. (Meliaceae).  J Ethnopharmacol. 2000;  60 27-33
  • 21 Srivastava P, Chandra S, Arif A J, Singh C, Pandey V C. Metal chelators/antioxidants: approaches to protect erythrocytic oxidative stress injury during Plasmodium berghei infection in Mastomys coucha. .  Pharmacol Res. 1999;  40 239-41
  • 22 Tasdemir D, Lack G, Brun R, Rüedi P, Scapozza L, Perozzo R. Inhibition of Plasmodium falciparum fatty acid biosynthesis: evaluation of FabG, FabZ, and FabI as drug targets for flavonoids.  J Med Chem. 2006;  49 3345-53
  • 23 Sannella A R, Messori L, Casini A, Vincieri F F, Bilia A R, Majori G. et al . Antimalarial properties of green tea.  Biochem Biophys Res Commun. 2007;  353 177-81

Dr. Lengo Mambu

USM 0502-UMR 5154

CNRS Chimie et Biochimie des Substances Naturelles

Département Régulations,

Développement et Diversité Moléculaire

Muséum National d’Histoire Naturelle

CP 54, 57 rue Cuvier

75231 Paris Cedex 05

France

Telefon: +33-1-4079-5607

Fax: +33-1-4079-3135

eMail: mambu@mnhn.fr