RSS-Feed abonnieren
DOI: 10.1055/s-2008-1034328
© Georg Thieme Verlag KG Stuttgart · New York
Antiplasmodial Phenolic compounds from Piptadenia pervillei
Publikationsverlauf
Received: September 11, 2007
Revised: January 25, 2008
Accepted: February 6, 2008
Publikationsdatum:
11. März 2008 (online)
Abstract
Piptadenia pervillei Vatke (Fabaceae) was selected from a screening programme devoted to the search of naturally-occuring antimalarial compounds from plants of Madagascar. Bioassay-guided fractionation of the ethyl acetate extract of the leaves led to the isolation of four phenolic compounds, (+)-catechin (1), (+)-catechin 5-gallate (2), (+)-catechin 3-gallate (3) and ethyl gallate (4). Structures were determined by NMR and mass spectroscopy. Compounds 2 and 3 displayed the highest in vitro activity against the chloroquine-resistant strain FcB1 of Plasmodium falciparum with IC50 values of 1.2 μM and 1.0 μM, respectively, and no significant cytotoxicity against the human embryonic lung cells MRC-5 was measured (IC50 values > 75 μM). Five analogues (5 - 9) of (+)-catechin 5-gallate (2) were synthesized and evaluated for their antiplasmodial activity.
Key words
Piptadenia pervillei - Fabaceae - antiplasmodial activity - (+)-catechin gallate
References
- 1 Hyde J E. Mechanisms of resistance of Plasmodium falciparum to antimalarial drugs. Microbes Infect. 2002; 4 165-74
- 2 Brinner K M, Kim J M, Habashita H, Gluzman I Y, Goldberg D E, Ellman J A. Novel and potent antimalarial agents. Bioorg Med Chem. 2001; 10 3649-61
- 3 Sullivan D J. Theories on malaria pigment formation and quinoline action. Int J Parasitol. 2002; 32 1645-53
- 4 Fitch C D. Ferriprotoporphyrin IX, phospholipids, and the antimalarial actions of quinoline drugs. Life Sci. 2004; 74 1957-72
- 5 Rasoanaivo P, Ramanitrahasimbola D, Rafatro H, Rakotondramanana D, Robijaona B, Rakotozafy A. et al . Screening extracts of Madagascan plants in search of antiplasmodial compounds. Phytother Res. 2004; 18 742-7
-
6 Villiers J F. Subfamily mimosoideae. In: Du Puy DJ, editor
The Leguminosae of Madagascar. Kew; Royal Botanical Gardens 2002: 154-293 - 7 Zelle R E, McClellan W J. A simple, high-yielding method for the methylenation of catechols. Tetrahedron Lett. 1991; 32 2461-4
- 8 Cren-Olivé C, Lebrun S, Rolando C. An efficient synthesis of the four mono methylated isomers of (+)-catechin including the major metabolites and of some dimethylated and trimethylated analogues through selective protection of the catechol ring. J Chem Soc Perkin Trans I 2002: 821-30
- 9 Tückmantel W, Kozikowski A P, Romanczyk L J. Studies in polyphenol chemistry and bioactivity. 1. Preparation of building blocks from (+)-catechin. Procyanidin formation. Synthesis of the cancer cell growth inhibitor, 3-O-galloyl-(2R,3R)-epicatechin 4β,8-[3-O-galloyl-(2R,3R)-epicatechin]. J Am Chem Soc. 1999; 121 12 073-81
- 10 Frappier F, Jossang A, Soudon J, Calvo F, Rasoanaivo P, Ratsimamanga-Urverg S. et al . Bisbenzylisoquinolines as modulators of chloroquine resistance in Plasmodium falciparum and multidrug resistance in tumor cells. Antimicrob Agents Chemother. 1996; 40 1476-81
- 11 Davies A L, Cai Y, Davies A P, Lewis J R. 1H and 13C NMR assignments of some green tea polyphenols. Magn Reson Chem. 1996; 34 887-90
- 12 Tanaka T, Nonaka G I, Nishioka I. 7-O-Galloyl-(+)-catechin and 3-O-Galloylprocyanidin B-3 from Sanguisorba officinalis. . Phytochemistry. 1983; 22 2575-8
- 13 Malan E. Derivatives of (+)-catechin-5-gallate from the bark of Acacia nilotica. Phytochemistry. 1991; 30 2737-9
- 14 Calixto J B, Santos A RS, Cechinel V, Yunes R A. A review of the plants of the genus Phyllanthus: their chemistry, pharmacology, and therapeutic potential. Med Res Rev. 1998; 18 225-58
- 15 Jankun J, Selman S H, Swiercz R, Skrzypczak-Jankun E. Why drinking green tea could prevent cancer. Nature. 1997; 387 561
- 16 Fraga C G, Martino V S, Ferraro G E, Coussio J D, Boveris A. Flavonoids as antioxidants evaluated by in vitro and in situ liver chemiluminescence. Biochem Pharmacol. 1987; 36 717-20
- 17 Kayser O, Kiderlin A F, Croft S L. Natural products as potential antiparasitic drugs. In: Atta-ur-Rahman, editor. Studies in natural products chemistry. Bioactive natural products (Part G). Amsterdam:. Elsevier; 2002 26, 779-848
- 18 Paveto C, Güida M C, Esteva M I, Martino V, Coussio J, Flawià M M. et al . Anti-Trypanosoma cruzi activity of Green tea (Camellia sinensis) catechins. Antimicrob Agents Chemother. 2004; 48 69-74
- 19 Kolodziej H, Kayser O, Kiderlen A F, Ito H, Hatano T, Yoshida T. et al . Proanthocyanidins and related compounds: antileishmanial activity and modulatory effects on nitric oxid and tumor necrosis factor-α-release in the murine macrophage-like cell line RAW 264. Biol Pharm Bull. 2001; 24 1016-21
- 20 Dickii J, Njifutie N, Foyere J A, Basco L , Ringwald P. In vitro antimalarial activity of limonoids from Khaya grandifolia C.D.C. (Meliaceae). J Ethnopharmacol. 2000; 60 27-33
- 21 Srivastava P, Chandra S, Arif A J, Singh C, Pandey V C. Metal chelators/antioxidants: approaches to protect erythrocytic oxidative stress injury during Plasmodium berghei infection in Mastomys coucha. . Pharmacol Res. 1999; 40 239-41
- 22 Tasdemir D, Lack G, Brun R, Rüedi P, Scapozza L, Perozzo R. Inhibition of Plasmodium falciparum fatty acid biosynthesis: evaluation of FabG, FabZ, and FabI as drug targets for flavonoids. J Med Chem. 2006; 49 3345-53
- 23 Sannella A R, Messori L, Casini A, Vincieri F F, Bilia A R, Majori G. et al . Antimalarial properties of green tea. Biochem Biophys Res Commun. 2007; 353 177-81
Dr. Lengo Mambu
USM 0502-UMR 5154
CNRS Chimie et Biochimie des Substances Naturelles
Département Régulations,
Développement et Diversité Moléculaire
Muséum National d’Histoire Naturelle
CP 54, 57 rue Cuvier
75231 Paris Cedex 05
France
Telefon: +33-1-4079-5607
Fax: +33-1-4079-3135
eMail: mambu@mnhn.fr