Int J Sports Med 2008; 29(12): 959-964
DOI: 10.1055/s-2008-1038676
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

The Assessment of Path Linearity in Swimming: A Pilot Study

G. Gatta1 , M. Ditroilo2 , D. Sisti3 , M. Cortesi1 , P. Benelli2 , M. Bonifazi4
  • 1Facoltà di Scienze Motorie, Università Alma Mater Studiorum, Bologna, Italy
  • 2Laboratorio di Valutazione Funzionale e Biomeccanica, Istituto di Ricerca sull'Attività Motoria, Urbino, Italy
  • 3Istituto di Biomatematica, Facoltà di Scienze Matematiche Fisiche Naturali, Urbino, Italy
  • 4Dipartimento di Fisiologia, Università di Siena, Siena, Italy
Further Information

Publication History

accepted after revision April 17, 2008

Publication Date:
11 June 2008 (online)

Abstract

The lateral-medial displacement (LF) and the overall drift from a straight path (DT) were quantified and compared in 5 top-level (TLS) and 5 low-level (LLS) crawl swimmers. Sixteen repetitions of 25-m crawl at increasing intensity were performed and videotaped. The performances were divided into 3 intensities (< 80 %, 80 – 90 % and > 90 % of maximal speed). LF was expressed as overlength swum (OLS) and coefficient of variation (CV) of the Z-component movement. OLS revealed a significant main effect for swimmer level (p < 0.01), intensity (p < 0.01) and their interaction (0.48, 0.37, 0.31-m for TLS and 0.47, 0.43, 0.44-m for LLS, p < 0.05). CV was significantly higher in LLS at the lowest (0.69 vs. 0.22, p < 0.05) and highest intensity (0.71 vs. 0.33, p < 0.05). DT, expressed as the slope of the linear regression of position data vs. time, was significantly higher in LLS only at the highest intensity (0.025 vs. 0.013, p < 0.05). The amount of dissipated energy due to LF, quantified by means of discrete Fourier analysis, revealed a difference only when the 0 – 5 Hz and 5 – 10 Hz spectral windows were analysed separately. While LF has a practical significance since it contributes to increase drag, DT is negligible at least for short-distance events.

References

  • 1 Canny J. A computational approach to edge detection.  IEEE Trans, Pattern Anal: Machine Intell. 1986;  8 679-698
  • 2 Cappaert J M, Gordon B J, Frisbie K. Frontal surface area measurements in national caliber swimmers.  Med Sci Sports Exerc. 1997;  29 712
  • 3 Cappozzo A. Gait analysis methodology.  Hum Mov Sci. 1984;  3 27-54
  • 4 Chollet D, Chalies S, Chatard J C. A new index of coordination for the crawl: description and usefulness.  Int J Sport Med. 2000;  21 54-59
  • 5 Counsilman J E, Counsilman B E (eds). The New Science of Swimming. Englewood Cliffs, New Jersey; Prentice-Hall Inc. 1994
  • 6 Huijing P A, Toussaint H M, Mackay R, Vervoorn K, Clarys J P, de Groot G, Hollander A P. Active drag related to body dimensions. Ungerechts BE, Wilke K, Reischle K Swimming Science V. Champaign; Human Kinetics Books 1988: 31-37
  • 7 Keskinen K L, Komi P V. Intracycle variation in force, velocity and power as a measure of technique performance during front crawl swimming.  J Biomech. 1994;  27 672
  • 8 Maglischo E W (ed). Swimming Fastest. Champaign, IL; Human Kinetics 2003
  • 9 Micciolo R, Zimmermann-Tansella C, Williams P, Tansella M. Seasonal variation in suicide: is there a sex difference?.  Psychol Med. 1989;  19 199-203
  • 10 Nikodelis T, Kollias I, Hatzitaki V. Bilateral inter-arm coordination in freestyle swimming: effect of skill level and swimming speed.  J Sport Sci. 2005;  23 737-745
  • 11 Novak J. Swimming direction and visual control. Hollander AP, Huijing PA, de Groot G Biomechanics and Medicine in Swimming. Champaign; Human Kinetics Publishers 1983: 345-349
  • 12 Potts A D, Charlton J E, Smith H M. Bilateral arm power imbalance in swim bench exercise to exhaustion.  J Sports Sci. 2002;  20 975-979
  • 13 Psycharakis S, Coleman S, Cannaboy C, Kelly J, McCabe C, Naemi R, Sanders R. Rolling actions of shoulders and hips in freestyle swimming. Proceedings of XXV ISBS Symposium 2007; Ouro Preto, Brazil, 83 – 86
  • 14 Seifert L, Chollet D, Allard P. Arm coordination symmetry and breathing effect in front crawl.  Hum Mov Sci. 2005;  24 234-256
  • 15 Shaeskin D J. Handbook of Parametric and Non Parametric Statistical Procedures. 2nd edn. Boca Raton, Florida; Chapman & Hall/CRC 2000
  • 16 Toussaint H M, Carol A, Kranenborg H, Truijens M. Effect of fatigue on stroking characteristics in an arms-only 100-m front crawl race.  Med Sci Sports Exerc. 2006;  38 1635-1642
  • 17 Toussaint H M, Roos P E, Kolmogorov S V. The determination of drag in front crawl swimming.  J Biomech. 2004;  37 1655-1663
  • 18 Wilson B D, Thorp R. Active drag in swimming. Chatard JC Biomechanics and Medicine in Swimming IX. St. Etienne; Université de St. Etienne 2003: 15-20
  • 19 Yanai T. Rotational effect of buoyancy in frontcrawl: does it really cause the legs to sink?.  J Biomech. 2001;  34 235-243
  • 20 Zamparo P, Capelli C, Termin B, Pendergast D R, di Prampero P E. Effect of the underwater torque on the energy cost, drag and efficiency of front crawl swimming.  Eur J Appl Phys Occup Phys. 1996;  73 195-201

Dr. Massimiliano Ditroilo

Istituto di Ricerca sull'Attività Motoria
Laboratorio di Valutazione Funzionale e Biomeccanica

via I Maggetti 26/2

61029 Urbino

Italy

Phone: + 39 07 22 30 34 13

Fax: + 39 07 22 30 34 01

Email: m.ditroilo@uniurb.it