Int J Sports Med 2009; 30(1): 22-26
DOI: 10.1055/s-2008-1038744
Training & Testing

© Georg Thieme Verlag KG Stuttgart · New York

Reliability of the VmaxST Portable Metabolic Measurement System

J. Blessinger1 , B. Sawyer2 , C. Davis3 , B. A. Irving4 , A. Weltman5 , G. Gaesser5
  • 1Student Health Connection, California State University Sacramento, Sacramento, California, United States
  • 2Kinesiology, Point Loma Nazarene University, San Diego, California, United States
  • 3Cardiology, Rady Children's Hospital, San Diego, California, United States
  • 4Endocrine Research Unit, Mayo Clinic College of Medicine, Rochester, Minnesota, United States
  • 5Human Services, University of Virginia, Charlottesville, Virginia, United States
Further Information

Publication History

accepted after revision May 23, 2008

Publication Date:
23 July 2008 (online)

Abstract

The purpose of this study was to evaluate the reliability of the VmaxST portable metabolic measurement system. Forty-five healthy adults (age = 25.7 ± 5.9 yr; height = 171.8 ± 9.1 cm; weight = 69.6 ± 12.8 kg; V˙O2peak = 40.7 ml/kg/min; percent fat = 21.7 ± 11.0) performed two separate and identical exercise routines on different days consisting of treadmill walking at 2.0 mph (53.6 m/min), 3.0 mph (80.5 m/min), and 4.0 mph (107.3 m/min) and running at 6.0 mph (160.9 m/min). V˙E and gas exchange were measured continuously breath-to-breath. A random effects model on log-transformed data yielded coefficients of variation (CV) and intraclass correlation coefficients (ICC) for V˙O2 and V˙E of 5.2 – 7.6 %, and 0.77 – 0.92, respectively, for all walking and running trials. For V˙CO2, CVs were higher (10 – 12 %) and ICCs lower (0.70 – 0.81). Ordinary least squares regression between the individual difference scores and the individual mean scores for V˙E, V˙O2 and V˙CO2, respectively, indicated no systematic bias (all p > 0.05). Bland-Altman analysis also illustrated no systematic bias between repeated measurements. The VmaxST provides reliable measurements of V˙O2 and V˙E during walking and running eliciting V˙E and V˙O2 at least up to ∼ 56 and 2.2 l/min, respectively. The system appears to be less reliable for measuring V˙CO2.

References

  • 1 Allor K M, Pivarnik J M, Sam L J, Perkins C D. Treadmill economy in girls and women matched for height and weight.  J Appl Physiol. 2000;  89 512-516
  • 2 Atkinson G, Davison R CR, Nevill A M. Performance characteristics of gas analysis systems: what we know and what we need to know.  Int J Sports Med. 2005;  26 (Suppl. 1) S2-S10
  • 3 Bland J M, Altman D G. Statistical methods for assessing agreement between two methods of clinical measurement.  Lancet. 1986;  1 307-310
  • 4 Brehm M-A, Harlaar J, Groepenhof H. Validation of the portable VmaxST system for oxygen-uptake measurement.  Gait & Posture. 2004;  20 67-73
  • 5 Carter J, Jeukendrup A E. Validity and reliability of three commercially available breath-by-breath respiratory systems.  Eur J Appl Physiol. 2002;  86 435-441
  • 6 Crouter S E, Antczak A, Hudak J R, Delta Valle D M, Haas J D. Accuracy and reliability of the ParvoMedics TrueOne 2400 and Medgraphics VO2000 metabolic systems.  Eur J Appl Physiol. 2006;  98 139-151
  • 7 Dempster P, Aitkens S. A new air displacement method for the determination of human body composition.  Med Sci Sports Exerc. 1995;  27 1692-1697
  • 8 Eisenmann J C, Brisko N, Shadrick D, Welsh S. Comparative analysis of the Cosmed Quark b2 and K4 b2 gas analysis systems during submaximal exercise.  J Sports Med Phys Fitness. 2003;  43 150-155
  • 9 Falls H B, Humphrey L D. Energy cost of running and walking in young women.  Med Sci Sports Exerc. 1976;  8 9-13
  • 10 Griewe J S, Kohrt W M. Energy expenditure during walking and jogging.  J Sports Med Phys Fitness. 2000;  40 297-302
  • 11 Hausswirth C, Bigard A X, LeChevalier J M. The Cosmed K4 telemetry system as an accurate device for oxygen uptake measurements during exercise.  Int J Sports Med. 1997;  18 449-453
  • 12 Hodges L D, Brodie D A, Bromley P D. Validity and reliability of selected commercially available metabolic analyzer systems.  Scand J Med Sci Sports. 2005;  15 271-279
  • 13 Hunter G R, Bamman M M, Larson-Meyer D E, Joanisse D R, McCarthy J P, Blandeau T E, Newcomer B R. Inverse relationship between exercise economy and oxidative capacity in muscle.  Eur J Appl Physiol. 2005;  94 558-568
  • 14 King G A, McLaughlin J E, Howley E T, Bassett Jr D R, Ainsworth B E. Validation of Aerosport KB1-C portable metabolic system.  Int J Sports Med. 1999;  20 304-308
  • 15 Larsson P U., Wadell K ME, Jakobsson E JI, Burlin L U, Henriksson-Larsén K B. Validation of the MetaMax II portable metabolic measurement system.  Int J Sports Med. 2004;  25 115-123
  • 16 Littlewood R A, White M S, Bell K L, Davies P SW, Cleghorn G J, Grote R. Comparison of the Cosmed K4 b2 and the Deltatrac II™ metabolic cart in measuring resting energy expenditure in adults.  Clin Nutr. 2002;  21 491-497
  • 17 Lothian F, Farrally M R, Mahoney C. Validity and reliability of the Cosmed K2 to measure oxygen uptake.  Can J Appl Physiol. 1993;  18 197-206
  • 18 Lucia A, Fleck S J, Gotshall R W, Kearney J T. Validity and reliability of the Cosmed K2 instrument.  Int J Sports Med. 1993;  14 380-386
  • 19 Maiolo C, Melchiorri G, Iacopino L, Masala S, De Lorenzo A. Physical activity energy expenditure measured using a portable telemetric device in comparison with a mass spectrometer.  Brit J Sports Med. 2003;  37 445-447
  • 20 Malatesta D, Simar S, Dauvilliers Y, Candau R, Borrani F, Prefaut C, Caillaud C. Energy cost of walking and gait instability in healthy 65- and 80-yr-olds.  J Appl Physiol. 2003;  95 2248-2256
  • 21 Martin P E, Rothstein D E, Larish D D. Effects of age and physical activity status on the speed-aerobic demand relationship of walking.  J Appl Physiol. 1992;  73 200-206
  • 22 McGraw K O, Wong S P. Forming inferences about some intraclass correlation coefficients.  Psych Methods. 1996;  1 30-46
  • 23 McLaughlin J E, King G A, Howley E T, Bassett Jr D R, Ainsworth B E. Validation of the COSMED K4 b2 portable metabolic system.  Int J Sports Med. 2001;  22 280-284
  • 24 Meyer T, Georg T, Becker C, Kindermann W. Reliability of gas exchange measurements from two different spiroergometry systems.  Int J Sports Med. 2001;  22 593-597
  • 25 Pate R R, Macera C A, Bailey S P, Bartoli W P, Powell K E. Physiological, anthropometric, and training correlates of running economy.  Med Sci Sports Exerc. 1992;  24 1128-1133
  • 26 Perret C, Mueller G. Validation of a new portable ergospirometric device (Oxycon Mobile®) during exercise.  Int J Sports Med. 2006;  27 363-367
  • 27 Prieur F, Castells J, Denis C. A methodology to assess the accuracy of a portable metabolic system (VmaxST™).  Med Sci Sports Exerc. 2003;  35 879-885
  • 28 Rosner B. Fundamentals of biostatistics. 3rd ed. Boston; PWS-Kent 1990: 560-567
  • 29 Wideman L, Stoudemire N M, Pass K A, McGinnes C L, Gaesser G A, Weltman A. Assessment of the Aerosport TEEM 100 portable metabolic measurement system.  Med Sci Sports Exerc. 1996;  28 509-515
  • 30 Willis W T, Ganley K J, Herman R M. Fuel oxidation during human walking.  Metab Clin Exp. 2005;  54 793-799

Prof. Glenn Gaesser

University of Virginia
Human Services

210 Emmet St., So., Box 400 407

22904 Charlottesville, Virginia

United States

Phone: + 1 43 49 24 35 43

Fax: + 1 43 49 24 13 89

Email: gag2q@virginia.edu