Thorac Cardiovasc Surg 2009; 57(1): 10-17
DOI: 10.1055/s-2008-1038881
Original Cardiovascular

© Georg Thieme Verlag KG Stuttgart · New York

A Novel Pulse Duplicator System: Evaluation of Different Valve Prostheses

P. Haaf1 , M. Steiner2 , T. Attmann1 , G. Pfister2 , J. Cremer1 , G. Lutter1
  • 1Department of Cardiovascular Surgery, University Hospital of Schleswig-Holstein, Campus Kiel, Kiel, Germany
  • 2Institute of Experimental and Applied Physics, Christian-Albrechts-University of Kiel, Kiel, Germany
Further Information

Publication History

received May 24, 2008

Publication Date:
23 January 2009 (online)

Abstract

Background: The hemodynamic characteristics of different heart valve prostheses have been investigated in vitro with a novel pulse duplicator. A novel valved stent for transapical or percutaneous valve implantation has been compared with a native heart valve and mechanical heart valves.

Methods: All experiments were designed to imitate both physiologic pressure ratios and flow characteristics in diastole and systole. After calibrating the system using a human aortic valve (primary orifice diameter: 22.0 mm), the following valves were studied under aortic pulsatile flow conditions: Hall-Kaster (Medtronic-Hall, 20.0 mm), St. Jude Medical (20.0 mm), a newly developed tricuspid valved stent (Tricumed TM4, 20.7 mm) and a newly developed biomechanical valve (Engage aortic valve Model 6000, 21.0 mm). All valves including the human aortic valve were assessed by videotape observation under pulsatile flow conditions. Measured flow-related parameters include in vitro mean transvalvular pressure, regurgitant volume, effective orifice area and performance index.

Results: The optical assessment of all five valves demonstrated a complete opening during systole and closing at the beginning of diastole. All valves were optically sufficient during diastole. Engage aortic valve Model 6000 showed the highest maximum transvalvular pressure (27.5 ± 8.2 mmHg), whereas both Hall-Kaster (17.9 ± 1.5 mmHg) and St. Jude Medical (16.7 ± 0.7 mmHg) had a lower gradient than the native aortic valve (24.0 ± 0.2 mmHg) and Tricumed TM4 (21.8 ± 3.8 mmHg). The maximum effective orifice area of St. Jude Medical amounted to 258.7 ± 3.4 mm², followed by Tricumed TM4 with an area of 222.1 ± 1.9 mm² and the human aortic valve with 160.4 ± 2.9 mm². Hall-Kaster and Engage aortic valve Model 6000 had an area of 198.9 ± 1.6 mm² and 176.7 ± 3.1 mm², respectively.

Conclusions: The pulse duplicator proved to be highly accurate and yielded reproducible results. Since it has been calibrated with a human aortic valve, the hemodynamics of any heart valve prosthesis can be compared with the human valve. This system can evaluate and promote the development of new biological and mechanical heart valve prostheses.

References

  • 1 Lindroos M, Kupari M, Heikkila J. et al . Prevalence of aortic valve abnormalities in the elderly: an echocardiographic study of a random population sample.  J Am Coll Cardiol. 1993;  21 1220-1225
  • 2 Harken D W, Curtis L E. Heart surgery: legend and a long look.  Am J Cardiol. 1967;  19 393-400
  • 3 International Standard ISO 5840. Cardiovascular implants – cardiac valve prostheses. 1989
  • 4 Steiner M. Beurteilung von biologischen und mechanischen Herzklappenprothesen anhand zeitaufgelöster Verfahren. Institut für Experimentelle und Angewandte Physik, Universität Kiel: Dissertation 2005
  • 5 Gries U. Strömungsuntersuchungen an künstlichen Herzklappen. Institut für Experimentelle und Angewandte Physik, Universität Kiel: Dissertation 2001
  • 6 Malki O. Hydrodynamik mechanischer Herzklappenprothesen. Institut für Experimentelle und Angewandte Physik, Universität Kiel: Dissertation 2000
  • 7 Yoganathan A P, Chaux A, Gray R J. et al . Bileaflet, tilting disc and porcine aortic valve substitutes: in vitro hydrodynamic characteristics.  J Am Coll Cardiol. 1984;  3 313-320
  • 8 Yoganathan A P, Woo Y R, Sung H W. et al . In vitro hemodynamic characteristics of tissue bioprostheses in the aortic position.  J Thorac Cardiovasc Surg. 1986;  92 198-209
  • 10 Carey R F, Herman B A. The effects of a glycerin-based blood analogon on the testing of bioprosthetic heart valves.  J Biomech. 1988;  22 (11/12) 1185-1192
  • 11 Schichl K. Entwicklung eines rechnergesteuerten Prüfstandes zur hydrodynamischen pulsatilen Testung künstlicher Herzklappen im Hinblick auf gegenwärtige und zukünftige Prüfstandards. Berlin; Köster 1995
  • 12 Werner S, Wendt M O, Schichl K, Pohl M, Koch B. Testung hydrodynamischer Eigenschaften von Herzklappenprothesen mit einem neuen Prüfstand.  Biomedizinische Technik. 1994;  39 204-210
  • 13 Yoganathan A P, Corcoran W H. Pressure drops across prosthetic aortic heart valve under steady and pulsatile flow – in vitro measurements.  J Biomechanics. 1979;  12 153-164
  • 14 Nygaard H, Giersiepen M, Hasenkam J M, Reul H, Paulsen P K, Rovsing P E, Westphal D. Two-dimensional color-mapping of turbulent shear stress distribution downstream of two aortic bioprosthetic valves in vitro.  J Biomech. 1992;  25 (4) 429-440
  • 15 Deiwick M, Glasmacher B, Pettenazzo E. Primary tissue failure of bioprostheses: new evidence from in vitro tests.  Thorac Cardiovasc Surg. 2001;  49 78-83

Dr. MD Philip Haaf

University Hospital of Schleswig-Holstein, Campus Kiel
Department of Cardiovascular Surgery

Arnold-Heller-Str. 7

24105 Kiel

Germany

Phone: + 49 43 15 97 44 01

Fax: + 49 43 15 97 44 02

Email: philiphaaf@hotmail.com