Subscribe to RSS
DOI: 10.1055/s-2008-1042759
Total Synthesis of the Proposed Structure of LL15G256γ
Publication History
Publication Date:
12 February 2008 (online)
Abstract
The first total synthesis of a molecule possessing the stereochemistry proposed for LL15G256γ is described. The structure synthesized appears to be different from that of the marine natural product.
Key words
antifungal agents - cyclodepsipeptide - LL15G256γ - total synthesis - benzylic oxidation - macrolactamization
- 1
Turner MS.Drew RH.Perfect JR. Expert Opinion on Emerging Drugs 2006, 11: 231 -
2a
Burja AM.Banaigs B.Abou-Mansour E.Burgess JG.Wright PC. Tetrahedron 2001, 57: 9347 -
2b
Gerwick WH.Tan LT.Sitachitta N. In The Alkaloids Vol. 57:Cordell GA. Academic Press; San Diego: 2001. p.75-184 -
2c
Luesch H.Harrigan GG.Goetz G.Horgen FD. Curr. Med. Chem. 2002, 9: 1791 -
3a
Proksch P.Edrada RA.Ebel R. Applied Microbiology and Biotechnology 2002, 59: 125 -
3b
Frenz JL.Kohl AC.Kerr RG. Expert Opin. Ther. Pat. 2004, 14: 17 - 4
Schlingmann G.Milne L.Williams DR.Carter GT.
J. Antibiot. 1998, 51: 303 - 5
Vijayakumar EKS.Roy K.Chatterjee S.Deshmukh SK.Ganguli BN.Fehlhaber H.-W.Kogler H. J. Org. Chem. 1996, 61: 6591 - 6
Albaugh D.Albert G.Bradford P.Cotter V.Froyd J.Gaughran J.Kirsch DR.Lai M.Rehnig A.Sieverding E.Silverman S. J. Antibiot. 1998, 51: 317 -
7a
Pang HW.Xu ZS.Chen ZY.Ye T. Lett. Org. Chem. 2005, 2: 699 -
7b
Peng YG.Pang HW.Xu ZS.Ye T. Lett. Org. Chem. 2005, 2: 703 -
7c
Peng YG.Pang HW.Ye T. Org. Lett. 2004, 6: 3781 -
7d
Xu ZS.Chen ZY.Ye T. Tetrahedron: Asymmetry 2004, 15: 355 -
7e
Xu ZS.Peng YG.Ye T. Org. Lett. 2003, 5: 2821 -
7f
Chen ZY.Deng JG.Ye T. ARKIVOC 2003, (vii): 268 - 8
Johnson JH.Tymiak AA.Bolgar MS. J. Antibiotics 1990, 43: 920 -
9a
Oikawa YI.Yonemitsu O. Heterocycles 1976, 5: 233 -
9b
Oikawa YI.Yonemitsu O. J. Org. Chem. 1977, 42: 1213 -
9c For the benzylic oxidation of tryptophan derivatives with DDQ, see:
Bagley MC.Hind SL.Moody CJ. Tetrahedron Lett. 2000, 41: 6897 -
10a
Van Heerbeek R.Kamer PCJ.Van Leeuwen PNMW.Reek JNH. Org. Biomol. Chem. 2006, 4: 211 -
10b
Ley SV.Smith SC.Woodward PR. Tetrahedron Lett. 1988, 29: 5829 -
11a
Evans DA.Ennis MD.Mathre DJ. J. Am. Chem. Soc. 1982, 104: 1737 -
11b For a review on asymmetric synthesis using chiral oxazolidinones, see:
Ager DJ.Prakash I.Schaad DR. Aldrichimica Acta 1997, 30: 312 -
12a
Brown HC.Bhat KS. J. Am. Chem. Soc. 1986, 108: 293 -
12b
Brown HC.Bhat KS.Randad RS. J. Org. Chem. 1989, 54: 1570 - 13
Yu W.Mei Y.Kang Y.Hua Z.Jin Z. Org. Lett. 2004, 6: 3217 -
14a
Bal BS.Childers WE.Pinnick HW. Tetrahedron 1981, 37: 2091 -
14b
Lindgren BO.Nilsson T. Acta Chem. Scand. 1973, 27: 888 - 15
Boden EP.Keck GE. J. Org. Chem. 1985, 50: 2394 - 16
Inanaga J.Hirata K.Saeki H.Katsuki T.Yamaguchi M. Bull. Chem. Soc. Jpn. 1979, 52: 1989 - 17
McKillop A.Taylor RJK.Watson RJ.Lewis N. Synthesis 1994, 31 -
18a
Yamada S.Kasai Y.Shioiri T. Tetrahedron Lett. 1973, 1595 -
18b
Takuma S.Hamada Y.Shioiri T. Chem. Pharm. Bull. 1982, 30: 3147 -
18c
Jeremic T.Linden A.Heimgartner H. Helv. Chim. Acta 2004, 87: 3056
References and Notes
Cyclodepsipeptide 2: [a]D 25 -3.6 (c 1.0, MeOH). 1H NMR (500 MHz, CD3OD): d = 7.56 (1 H, d, J = 7.9 Hz), 7.32 (1 H, d, J = 8.2 Hz), 7.18 (1 H, s), 7.09 (1 H, dd, J = 7.8, 7.8 Hz,), 7.01 (1 H, dd, J = 7.8, 7.1 Hz), 4.96 (1 H, dd, J = 9.2, 7.2 Hz), 4.62 (1 H, dd, J = 8.8, 5.0 Hz), 4.45 (1 H, dd, J = 7.8, 5.7 Hz), 3.98 (1 H, t, J = 7.4 Hz,), 3.54-3.46 (2 H, m), 3.26 (1 H, dd, J = 15.1, 5.3 Hz,), 3.26 (1 H, dd, J = 15.1, 8.9 Hz), 2.82 (1 H, dd, J = 9.7, 7.3 Hz), 2.20-2.17 (2 H, m), 2.04-1.95 (2 H, m), 1.85-1.80 (1 H, m), 1.43 (9 H, s), 1.31 (14 H, br s), 1.17 (3 H, d, J = 7.2 Hz), 0.90 (3 H, d, J = 6.9 Hz), 0.88 (3 H, t, J = 7.2 Hz) ppm. 13C NMR (125 MHz, CD3OD): δ = 176.6, 174.2, 173.9, 172.8, 169.2, 138.1, 128.7, 124.3, 122.6, 119.9, 119.2, 112.4, 110.7, 81.8, 80.4, 62.6, 57.3, 56.9, 54.2, 44.7, 36.1, 35.1, 33.0, 32.5, 30.8, 30.6, 30.4, 28.4 (3 C), 28.3, 27.8, 25.3, 23.7, 15.5, 14.4, 14.1 ppm. ESI-HRMS: m/z calcd for C37H56N4O8Na [M + Na]+: 707.3996; found: 707.3998.
20
Procedure for the Synthesis of LL15G256γ (1)
To a stirred solution of cyclodepsipeptide 2 (30 mg, 0.044 mmol) in 90% THF (5 mL), DDQ (25 mg, 0.11 mmol) was added at 0 °C. The reaction was allowed to warm to r.t. and stirred for 6 h. Then, EtOAc (30 mL) was added and the mixture was washed with sat. aq NaHCO3 (3 × 15 mL) and brine (15 mL). The organic layer was dried over Na2SO4 and concentrated. The residue, after being purified by flash chromatography on silica gel, using MeOH-CH2Cl2 (5:95) as eluent, provided the desired β-keto product (21.1 mg, 69%). [a]D
25 -8.0 (c 0.8, CH2Cl2). IR (KBr): 3421.5, 3282.6, 2927.7, 2854.5, 1697.2, 1651.0, 1508.2, 1419.5, 1280.6, 1157.2, 1068.5, 748.3 cm-1. 1H NMR (500 MHz, DMSO-d
6): δ = 12.14 (1 H, s), 8.58 (1 H, d, J = 7.7 Hz), 8.40 (1 H, s), 8.31 (1 H, d, J = 6.9 Hz), 8.14 (1 H, dd, J = 8.4, 1.6 Hz), 7.50 (1 H, dd, J = 8.2, 1.3 Hz), 7.25-7.18 (3 H, m), 5.77 (1 H, d, J = 8.6 Hz), 5.02 (1 H, dd, J = 6.6, 4.6 Hz), 4.90 (1 H, d, J = 5.7 Hz), 4.28 (1 H, dd, J = 9.0, 6.3 Hz), 3.73 (1 H, d, J = 8.4 Hz), 3.40-3.34 (2 H, m), 2.74 (1 H, dd, J = 10.6, 7.1 Hz), 2.18-2.15 (1 H, m), 2.02-1.97 (1 H, m), 1.96-1.93 (1 H, m), 1.70-1.67 (1 H, m), 1.37 (9 H, s), 1.22 (14 H, br s), 1.35-1.30 (1 H, m), 1.05 (3 H, d, J = 6.7 Hz), 0.84 (3 H, t, J = 6.8 Hz), 0.83 (3 H, d, J = 6.9 Hz) ppm. 13C NMR (125 MHz, DMSO-d
6): δ = 186.2, 174.1, 172.4, 170.2, 167.9, 167.5, 137.1, 136.9, 126.1, 123.8, 122.8, 121.6, 113.9, 113.0, 80.1, 77.4, 62.1, 61.6, 56.1, 53.1, 42.9, 34.0, 33.9, 31.9, 31.7, 29.6, 29.4, 29.1, 28.3 (3 C), 27.3, 24.0, 22.5, 15.6, 14.4, 13.7 ppm. ESI-HRMS: m/z calcd for C37H54N4O9Na [M + Na]+: 721.3788; found: 721.3790. To a solution of the above β-keto macrocyclic peptide (21 mg, 0.03 mmol) in anhyd CH2Cl2 (2 mL) was added TFA (1 mL) at 0 °C. The reaction mixture was allowed to warm to r.t. and stirred for 6 h. The solvent was evaporated under reduced pressure and the crude product was purified by flash chromatography on silica gel, using MeOH-CH2Cl2 (5:95 to 10:90) as eluent, to provide the desired target molecule (19 mg, 98%). [a]D
25 -11.6 (c 1.0, CD3OH). 1H NMR (500 MHz, DMSO-d
6): δ = 12.16 (1 H, s), 12.06 (1 H, s), 8.60 (1 H, d, J = 8.0 Hz), 8.38 (1 H, d, J = 3.0 Hz), 8.32 (1 H, br s), 8.15 (1 H, d, J = 6.8 Hz), 7.94 (1 H, s), 7.49 (1 H, d, J = 7.3 Hz), 7.49-7.19 (3 H, m), 5.77 (1 H, d, J = 8.7 Hz), 5.01 (1 H, t, J = 5.5 Hz), 4.95 (1 H, d, J = 10.6 Hz), 4.29 (1 H, dd, J = 8.9 Hz), 3.72 (1 H, br s), 3.38-3.34 (2 H, m), 2.76-2.71 (1 H, m), 2.08-2.03 (2 H, m), 1.99-1.94 (2 H, m), 1.70-1.65 (1 H, m), 1.34-1.30 (2 H, m), 1.28 (11 H, br s), 1.09-1.04 (1 H, m), 1.05 (3 H, d, J = 6.9 Hz), 0.83 (3 H, t, J = 7.0 Hz), 0.82 (3 H, d, J = 6.8 Hz) ppm. 13C NMR (125 MHz, CDCl3): δ = 185.7, 174.0, 173.5, 173.4, 167.3, 166.9, 136.5, 136.2, 125.5, 123.1, 122.3, 113.3, 112.3, 121.0, 76.7, 61.5, 61.0, 55.5, 52.5, 42.1, 33.4, 33.2, 31.1, 30.0, 29.1, 28.9, 28.7, 26.7, 23.1, 21.9, 15.1, 13.8, 13.1 ppm. ESI-HRMS: m/z calcd for C33H47N4O9 [M + H]+: 643.3343; found: 643.3334; m/z calcd for C33H46N4O9Na [M + Na]+: 665.3162; found: 665.3150.
The HPLC comparison between the synthetic sample and the naturally occurring LL15G256γ were conducted by Dr. Gerhard Schlingmann (Wyeth Research, New York).