Subscribe to RSS
DOI: 10.1055/s-2008-1042911
Sequential Electrophilic Trapping Reactions for the Desymmetrization of Dilithio(hetero)arenes
Publication History
Publication Date:
11 March 2008 (online)
Abstract
Double bromine-lithium exchange and sequential trapping of the dilithio intermediate with different electrophiles gives rise to the formation of unsymmetrically substituted (hetero)arenes in a one-pot fashion.
Key words
arenes - bromine-lithium exchange - dianions - heterocycles - one-pot reactions
- For selected reviews on halogen-metal exchange, see for example:
-
1a
Parham WE.Bradsher CK. Acc. Chem. Res. 1982, 15: 300 -
1b
Bailey WF.Patricia JJ. J. Organomet. Chem. 1988, 352: 1 -
1c
Knochel P.Dohle W.Gommermann N.Kneisel FF.Kopp F.Korn T.Sapountzis I.Vu VA. Angew. Chem. Int. Ed. 2003, 42: 4302 -
1d
El Sheikh S.Schmalz H.-G. Curr. Opin. Drug Discovery Dev. 2004, 7: 882 -
1e
Leroux F.Schlosser M.Zohar E.Marek I. In Chemistry of Organolithium Compounds Vol. 1:Rappoport Z.Marek I. Wiley-VCH; Weinheim: 2004. p.435-493 - See, for example:
-
2a
Liu Y.Gribble GW. Tetrahedron Lett. 2002, 43: 7135 -
2b
Wang X.Rabbat P.O’Shea P.Tillyer R.Grabowski EJJ.Reider PJ. Tetrahedron Lett. 2000, 41: 4335 -
2c
Hegedus LS.Odle RR.Winton PM.Weider PR. J. Org. Chem. 1982, 47: 2607 -
2d
Parham WE.Piccirilli RM. J. Org. Chem. 1977, 42: 257 - 3 For a recent monography, see for example:
Multicomponent Reactions
Zhu J.Bienaymé H. Wiley-VCH; Weinheim: 2005. - For reviews, see for example:
-
4a
Bienaymé H.Hulme C.Oddon G.Schmitt P. Chem. Eur. J. 2000, 6: 3321 -
4b
Dömling A.Ugi I. Angew. Chem. Int. Ed. 2000, 39: 3168 -
4c
Ugi I.Dömling A.Werner B. J. Heterocycl. Chem. 2000, 37: 647 -
4d
Weber L.Illgen K.Almstetter M. Synlett 1999, 366 -
4e
Armstrong RW.Combs AP.Tempest PA.Brown SD.Keating TA. Acc. Chem. Res. 1996, 29: 123 -
4f
Ugi I.Dömling A.Hörl W. Endeavour 1994, 18: 115 -
4g
Posner GH. Chem. Rev. 1986, 86: 831 - For reviews on diversity-oriented syntheses, see for example:
-
5a
Schreiber SL.Burke MD. Angew. Chem. Int. Ed. 2004, 43: 46 -
5b
Burke MD.Berger EM.Schreiber SL. Science 2003, 302: 613 -
5c
Arya P.Chou DTH.Baek MG. Angew. Chem. Int. Ed. 2001, 40: 339 -
5d
Cox B.Denyer JC.Binnie A.Donnelly MC.Evans B.Green DVS.Lewis JA.Mander TH.Merritt AT.Valler MJ.Watson SP. Prog. Med. Chem. 2000, 37: 83 -
5e
Schreiber SL. Science 2000, 287: 1964 - 6
Kobayashi S. Chem. Soc. Rev. 1999, 28: 1 - 7
Cai D.Hughes DL.Verhoeven TR. Tetrahedron Lett. 1996, 37: 2537 -
10a
Mitsumori T.Inoue K.Koga N.Iwamura H. J. Am. Chem. Soc. 1995, 117: 2467 -
10b
Feringa BL.Hulst R.Rikers R.Brandsma L. Synthesis 1988, 316 - For recent reviews, see for example:
-
11a
Knochel P.Calaza MI.Hupe E.Negishi E.-I.Liu F. In Metal-Catalyzed Cross-Coupling Reactionsde Meijere A.Diederich F. Wiley-VCH; Weinheim: 2004. p.619-670 -
11b
Negishi E.Zeng X.Tan Z.Qian M.Hu Q.Huang Z. In Metal-Catalyzed Cross-Coupling Reactionsde Meijere A.Diederich F. Wiley-VCH; Weinheim: 2004. p.815-889
References and Notes
Representative Procedure - Synthesis of Trimethyl[5-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)thiophen-2-yl]silane (3b; Table 1, Entry 2)
In a flame-dried Schlenk flask under N2 atmosphere n-BuLi (2.5 M in n-hexane, 0.83 mL, 2.00 mmol) and TMEDA (0.3 mL, 2.0 mmol) were dissolved in anhyd THF (30 mL) at
-78 °C. 2,5-Dibromothiophene (1a, 242 mg, 1.00 mmol) was added slowly to the solution, and the mixture was stirred for 30 min. Then, TMSCl (2a, 0.11 g, 1.00 mmol) in anhyd THF (10 mL) was added dropwise to the stirred solution over a period of 3 h. The reaction mixture was stirred for another 30 min and B(OMe)3 (2c, 208 mg, 1.00 mmol) was added. After stirring for 40 min pinacol (130 mg, 1.10 mmol) in anhyd THF (5 mL) was added to the mixture. The solution was allowed to warm to r.t., a few drops of AcOH were added, and the solution was stirred for 14 h. After aqueous workup and extraction with Et2O the combined organic layers were dried with MgSO4. The solvent was removed under reduced pressure and the residue purified by flash chromatography on silica gel (hexane-EtOAc, 10:1) gives 156 mg (55%) of 3b as a colorless solid.
1H NMR (300 MHz, CDCl3): δ = 0.30 (s, 9 H), 1.33 (s, 12 H), 7.31 (d, 3
J = 3.3 Hz, 1 H), 7.67 (d, 3
J = 3.3 Hz, 1 H). 13C NMR (75 MHz, CDCl3): δ = -0.1, 24.8, 84.1, 135.0, 137.9, 148.5. MS (EI): m/z (%) = 282(21) [M]+, 267(100) [C12H20BO2SSi]+, 233(4), 209(5), 183(7), 167(11). HRMS (EI): m/z calcd for C13H23BO2SSi [M]+: 282.1281; found: 282.1274.
5-(Trimethylsilyl)thiophene-2-carbaldehyde (3a)
1H NMR (300 MHz, CDCl3): δ = 0.34 (s, 9 H), 7.29 (d,
³
J = 3.6 Hz, 1 H), 7.77 (d,
³
J = 3.6 Hz, 1 H), 9.92, (s, 1 H). 13C NMR (75 MHz, CDCl3): δ = -0.5, 134.5, 136.7, 148.2, 152.7, 182.6. MS (EI): m/z (%) = 184(19) [M]+, 189(100) [C7H9OSSi]+. HRMS (EI): m/z calcd. for C8H12OSSi [M]+: 184.0378; found: 184.0368.
5-(Trimethylsilyl)-1
H
-pyrrole-2-carbaldehyde (3c)
1H NMR (300 MHz, CDCl3): δ = 0.24 (s, 9 H), 6.37-6.48 (m, 1 H), 6.91-6.93 (m, 1 H), 9.46 (s, 1 H). 13C NMR (75 MHz, CDCl3): δ = 0.02, 120.5, 122.8, 137.4, 143.1, 180.4. MS (EI): m/z (%) = 167(36) [M]+, 152(100) [C7H10NOSi]+.
10-Hexyl-7-iodo-10
H
-phenothiazine-3-carbaldehyde (3d)
1H NMR (300 MHz, acetone-d
6): δ = 0.82-0.86 (m, 3 H), 1.27-1.30 (m, 4 H), 1.43-1.48 (m, 2 H), 1.74-1.84 (m, 2 H), 4.00 (t, J = 7.0 Hz, 2 H), 6.89 (d, J = 8.5 Hz, 1 H), 7.17 (d, J = 8.5 Hz, 1 H), 7.45 (d, J = 1.8 Hz, 1 H), 7.47 (dd, J = 8.5, 1.8 Hz, 1 H), 7.52 (dd, J = 8.5, 1.9 Hz, 1 H), 7.60 (d, J = 2.2 Hz, 1 H). 13C NMR (75 MHz, acetone-d
6): δ = 14.1, 23.1, 26.8, 27.1, 31.9, 48.2, 85.8, 116.5, 119.1, 124.9, 127.0, 128.5, 130.8, 132.6, 135.8, 137.3, 144.6, 150.9, 190.3. MS (EI): m/z (%) = 437(100) [M]+, 366(42), 352(76), 239(14), 255(20), 196(22).
10-Hexyl-7-iodo-3-(4,4,5,5-tetramethyl-1,3,2-dioxaborolan-2-yl)-10
H
-phenothiazine-3-carbaldehyde (3e)
1H NMR (300 MHz, acetone-d
6): δ = 0.82-0.86 (m, 3 H), 1.27-1.28 (m, 16 H), 1.40-1.46 (m, 2 H), 1.71-1.81 (m, J = 6.9 Hz, 2 H), 3.93 (t, J = 7.0 Hz, 2 H), 6.83 (d, J = 8.4 Hz, 1 H), 7.02 (d, J = 8.1 Hz, 1 H), 7.42-7.44 (m, 2 H), 7.48 (dd, J = 2.2, 8.5 Hz, 1 H), 7.56 (dd, J = 1.5, 8.1 Hz, 1 H). 13C NMR (75 MHz, acetone-d
6]): δ = 14.1, 23.1, 25.0, 26.9, 27.2, 32.0, 48.7, 84.4, 84.8, 116.1, 123.7, 127.9, 134.1, 135.2, 135.6, 135.8, 136.9, 145.6, 148.3. MS (EI): m/z (%) = 535(100) [M]+, 450(24), 409(2). Anal. Calcd for C24H31BINO2S (535.3): C, 53.85; H, 5.84; N, 2.62; S, 5.99. Found: C, 57.84; H, 8.13; N, 1.97.
2-(4′-Iodobiphenyl-4-yl)-4,4,5,5-tetramethyl-1,3-dioxaborolane (3f)
1H NMR (300 MHz, CDCl3): δ = 1.35 (s, 12 H), 7.34 (d,
³
J = 8.50 Hz, 2 H), 7.55 (d,
³
J = 8.23 Hz, 2 H), 7.75 (d,
³
J = 8.50 Hz, 2 H), 7.90 (d,
³
J = 8.23 Hz, 2 H). 13C NMR (75 MHz, CDCl3): δ = 24.9, 83.9, 93.4, 126.2, 128.8, 129.0, 135.4, 137.9, 140.5, 142.6. MS (EI): m/z (%) = 406(100) [M]+, 306(48) [C12H8BOI]+, 179(23) [C12H8BO]+, 152(15). HRMS (EI): m/z calcd for C18H20BIO2 [M]+: 406.0601; found: 406.0556.
9-Octyl-6-(trimethylsilyl)-9
H
-carbazole-3-carbaldehyde (3g)
1H NMR (300 MHz, CDCl3): δ = 0.35 (s, 9 H), 0.84 (t,
³
J = 6.7 Hz, 3 H), 1.16-1.47 (m, 10 H), 1.80-1.94 (m, 2 H), 4.30 (t,
³
J = 7.2 Hz, 2 H), 7.45 (dd, J = 8.3, 1.9 Hz, 1 H), 7.66 (dd,
³
J = 1.0, 0.4 Hz, 1 H), 7.99 (dd, J = 8.3, 1.3 Hz, 1 H), 8.32 (s, 1 H), 8.64 (d,
³
J = 1.3 Hz, 1 H), 10.09 (s, 1 H). 13C NMR (75 MHz, CDCl3): δ = -0.7, 0.7, 14.1, 22.6, 27.2, 28.9, 29.1, 29.3, 31.8, 43.4, 108.9, 122.8, 123.9, 125.6, 127.1, 131.0, 131.5, 141.7, 144.1, 191.8. MS (EI): m/z (%) = 379(100) [M]+, 364(84) [C23H30NOSi]+, 280(28) [C17H18NOSi]+, 150(11). HRMS (EI): m/z calcd for C24H33NOSi [M]+: 379.2331; found: 379.2358. Anal. Calcd for C24H33NOSi: C, 75.94; H, 8.76; N, 3.69. Found: C, 76.37; H, 8.79; N, 3.61.
Trimethyl(5-
p
-tolylthiophen-2-yl)silane (4)
1H NMR (300 MHz, CDCl3): δ = 0.33 (s, 9 H), 2.35 (s, 3 H), 7.18 (m, 3 H), 7.31 (d,
³
J = 3.4 Hz, 1 H), 7.51 (d,
³
J = 8.2 Hz, 2 H). 13C NMR (75 MHz, CDCl3): δ = -0.4, 21.2, 123.9, 126.0, 129.5, 131.7, 133.8, 134.9, 137.3, 139.4. MS (EI):
m/z (%) = 246(61) [M]+, 231(100) [C13H15SSi]+. HRMS (EI): m/z calcd for C14H18SSi [M]+: 246.0898; found: 246.0920.
Interestingly, the expected byproducts, i.e. symmetrical disubstitution with the first electrophile and monosubstitution with the first electrophile followed by proton quenching are only found in minor quantities and were identified by GC-MS analysis in the crude ethereal extract during workup.