Subscribe to RSS
DOI: 10.1055/s-2008-1042922
Construction of the CDE-Ring Framework of Erinacine E through a Pummerer-Type Cyclization
Publication History
Publication Date:
17 March 2008 (online)
Abstract
The CDE-ring framework of erinacine E, a potent stimulator against nerve growth factor (NGF) synthesis, was constructed using stereocontrolled Grignard addition, silicon-promoted Pummerer-type cyclization, and ring-closing metathesis as key transformations.
Key words
erinacine - Pummerer reaction - ring-closing metathesis - stereoselective addition - cyathane diterpene
- For leading papers including isolation of cyathane diterpenes, see:
-
1a Cyathins:
Ayer WA.Taube H. Tetrahedron Lett. 1972, 13: 1917 -
1b Allocyathins:
Ayer WA.Lee SP. Can. J. Chem. 1979, 57: 3332 -
1c Striatins:
Hecht HJ.Hoefle G.Steglich W.Anke T.Oberwinkler FJ. J. Chem. Soc., Chem. Commun. 1978, 15: 665 -
1d Sarcodonins:
Hirota M.Morimura K.Shibata H. Biosci., Biotechnol., Biochem. 2002, 66: 179 -
1e Scabronins:
Kita T.Takaya Y.Oshima Y.Ohta T.Aizawa K.Hirano T.Inakuma T. Tetrahedron 1998, 54: 11877 -
1f Cyanthiwigins:
Peng J.Walsh K.Weedman V.Bergthold JD.Lynch J.Lieu KL.Braude IA.Kelly M.Hamann MT. Tetrahedron 2002, 58: 7809 -
1g Cyrneines:
Marcotullio MC.Pagiotti R.Maltese F.Mwankie GNO.-M.Hoshino T.Obara Y.Nakahata N. Bioorg. Med. Chem. 2007, 15: 2878 - 2
Kawagishi H.Shimada A.Hosokawa S.Mori H.Sakamoto H.Ishiguro Y.Sakemi S.Bordner J.Kojima N.Furukawa S. Tetrahedron Lett. 1996, 37: 7399 - For isolation of other erinacine family, see:
-
3a
Kawagishi H.Shimada A.Shirai R.Okamoto K.Ojima F.Sakamoto H.Ishiguro Y.Furukawa S. Tetrahedron Lett. 1994, 35: 1569 -
3b
Kawagishi H.Shimada A.Shizuki K.Mori H.Okamoto K.Sakamoto H.Furukawa S. Heterocycl. Commun. 1996, 2: 51 -
3c
Lee EW.Shizuki K.Hosokawa S.Suzuki M.Suganuma H.Inakuma T.Li J.Ohnishi-Kameyama M.Nagata T.Furukawa S.Kawagishi H. Biosci., Biotechnol., Biochem. 2000, 64: 2402 -
3d
Kawagishi H.Masui A.Tokuyama S.Nakamura T. Tetrahedron 2006, 62: 8463 -
3e
Kenmoku H.Sassa T.Kato N. Tetrahedron Lett. 2000, 41: 4389 -
3f
Kenmoku H.Shimai T.Toyomasu T.Kato N.Sassa T. Biosci., Biotechnol., Biochem. 2002, 66: 571 - 4
Saito T.Aoki F.Hirai H.Inagaki T.Matsunaga Y.Sakakibara T.Sakemi S.Suzuki Y.Watanabe S.Suga O.Sujaku T.Smogowicz AA.Truesdell SJ.Wong JW.Nagahisa A.Kojima Y.Kojima N. J. Antibiot. 1998, 51: 983 -
5a
Snider BB.Vo NH.O’Neil SV.Foxman BM. J. Am. Chem. Soc. 1996, 118: 7644 -
5b
Snider BB.Vo NH.O’Neil SV. J. Org. Chem. 1998, 63: 4732 -
5c
Watanabe H.Takano M.Umino A.Ito T.Ishikawa H.Nakada M. Org. Lett. 2007, 9: 359 - Total syntheses of allocyathin B2, the aglycon of erinacine A, have been reported:
-
6a
Tori M.Toyoda N.Sono M.
J. Org. Chem. 1998, 63: 306 -
6b
Takano M.Umino A.Nakada M. Org. Lett. 2004, 6: 4897 -
6c
Trost BM.Dong L.Schroeder GM. J. Am. Chem. Soc. 2005, 127: 2844 -
6d
Trost BM.Dong L.Schroeder GM. J. Am. Chem. Soc. 2005, 127: 10259 - For total syntheses of other tricyclic cyathane diterpenes, see:
-
7a
Piers E.Gilbert M.Cook KL. Org. Lett. 2000, 2: 1407 -
7b
Ward DE.Gai Y.Qiao Q. Org. Lett. 2000, 2: 2125 -
7c
Ward DE.Gai Y.Qiao Q.Shen J. Can. J. Chem. 2004, 82: 254 -
7d
Pfeiffer MWB.Phillips AJ. J. Am. Chem. Soc. 2005, 127: 5334 -
7e
Waters SP.Tian Y.Li Y.-M.Danishefsky SJ. J. Am. Chem. Soc. 2005, 127: 13514 - For other synthetic studies, see:
-
8a
Sato A.Masuda T.Arimoto H.Uemura D. Org. Biomol. Chem. 2005, 3: 2231 -
8b
Drege E.Morgant G.Desmaele D. Tetrahedron Lett. 2005, 46: 7263 -
8c
Nakashima K.Fujisaki N.Inoue K.Minami A.Nagaya C.Sono M.Tori M. Bull. Chem. Soc. Jpn. 2006, 79: 1955 -
8d
Magnus P.Shen L. Tetrahedron 1999, 55: 3553 -
8e
Takeda K.Nakane D.Takeda M. Org. Lett. 2000, 2: 1903 -
8f
Wender PA.Bi FC.Brodney MA.Gosselin F. Org. Lett. 2001, 3: 2105 -
8g
Wright DL.Whitehead CR.Sessions EH.Ghiviriga I.Frey DA. Org. Lett. 1999, 1: 1535 - 9 Very recently, Watanabe and Nakada succeeded in the biomimetic total synthesis of (-)-erinacine E:
Watanabe H.Nakada M. J. Am. Chem. Soc. 2008, 130: 1150 -
10a
Scholl M.Ding S.Lee CW.Grubbs RH. Org. Lett. 1999, 1: 953 -
10b
Deiters A.Martin SF. Chem. Rev. 2004, 104: 2199 -
10c
Nicolaou KC.Bulger PG.Sarlah D. Angew. Chem. Int. Ed. 2005, 44: 4490 -
10d
Handbook of Metathesis
Vol. 1:
Grubbs RH. Wiley; New York: 2003. -
10e
Handbook of Metathesis
Vol. 2:
Grubbs RH. Wiley; New York: 2003. -
10f
Handbook of Metathesis
Vol. 3:
Grubbs RH. Wiley; New York: 2003. -
11a
Bur SK.Padwa A. Chem. Rev. 2004, 104: 2401 -
11b
Raghavan S.Rajender A.Rasheed MA.Reddy SR. Tetrahedron Lett. 2003, 44: 8253 ; and references cited therein - 12
Gómez AM.Moreno E.Valverde S.López JC. Eur. J. Org. Chem. 2004, 1830 - 13
Sharpless KB.Michaelson RC. J. Am. Chem. Soc. 1973, 95: 6136 -
16a
Mitsunobu O. Synthesis 1981, 1 -
16b
Tsunoda T.Yamamiya Y.Kawamura Y.Itô S. Tetrahedron Lett. 1995, 36: 2529 - 19
Dilworth BM.McKervey MA. Tetrahedron 1986, 42: 3731 - For leading examples of intermolecular AgOTf-mediated O,S-acetalization, see:
-
20a
Inoue M.Wang GX.Wang J.Hirama M. Org. Lett. 2002, 4: 3439 -
20b
Kobayashi S.Alizadeh BH.Sasaki S.Oguri H.Hirama M. Org. Lett. 2004, 6: 751 - 21
Ichikawa S.Matsuda A. Nucleoside, Nucleotides Nucleic Acids 2004, 23: 239 -
24a
Bernadelli P.Paquette LA. Heterocycles 1998, 49: 531 -
24b
Chai Y.Mcintosh MC. Tetrahedron Lett. 2004, 45: 3269 ; and references cited therein
References and Notes
The C8-stereochemistry of each product was confirmed by NOE experiments after the Pummerer-type cyclization.
152-Iodocyclohexen-1-one ethylene ketal was synthesized from 2-cyclohexen-1-one as follows: (i) I2, pyridine, THF, r.t., 12 h, 80%; (ii) 1,2-bis(trimethylsilyloxy)ethane, TMSOTf, CH2Cl2, -20 °C, 72 h, 86%.
17At best, a 1:1 selectivity was obtained for reduction of the C8-ketone of 13a with LiAlH4 in THF at 0 °C (98% yield). Other reductants including Zn(BH4)2, NaBH4, L-Selectride, or Red-Al gave inferior yields and selectivity.
18Pivaloate was cleaved with DIBAL in CH2Cl2 at -78 °C.
22To a solution of 17b (108 mg, 0.139 mmol) in CH2Cl2 (2 mL) was added MCPBA (65%, 111 mg, 0.417 mmol) at -78 °C. The mixture was stirred at -78 °C to -50 °C for 1 h, followed by addition of sat. Na2S2O3 solution, Et2O, and sat. NaHCO3 solution. The resulting mixture was stirred at r.t. for 30 min and extracted with Et2O. The combined organic phase was washed with sat. NaHCO3 solution, brine, and dried over anhyd MgSO4. Concentration of the solution gave the corresponding sulfoxide (117 mg), which was used without further purification. To a solution of sulfoxide (117 mg) and imidazole (94.6 mg, 1.39 mmol) in DMF (1.4 mL) was added TBDPSCl (107 µL, 0.417 mmol). The mixture was stirred at 80 °C for 3 h, and diluted with Et2O and sat. NaHCO3 solution. After separation of the organic phase, the aqueous phase was extracted with Et2O and the combined organic phase was washed with sat. NH4Cl solution, brine, and dried over anhyd MgSO4. After concentration, the residue was purified by flash column chromatography (silica gel; hexane-EtOAc, 40:1 → 25:1 → 10:1) to give O,S-acetal 19 (64.7 mg, 0.0835 mmol, 60%) and ketone 22 (32.3 mg, 0.0417 mmol, 30%). To a solution of 19 (33.3 mg, 0.0430 mmol) in THF (1.4 mL) was added TBAF (1.0 M solution in THF, 64.4 µL, 0.0644 mmol). The mixture was stirred at r.t. for 1.5 h. After concentration, the residue was purified by flash column chromatography (silica gel; hexane-EtOAc, 10:1 → 5:1 → 3:1 → 1:1) to give alcohol 20 (24.9 mg, 0.0403 mmol, 94%). Compound 20: [α]D
29 -2.4° (c = 0.822, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 1.34 (s, 3 H, Me), 1.51 (s, 3 H, Me), 1.93 (q, J = 7.6 Hz, 2 H, H9), 2.15-2.25 (m, 1 H, H10), 2.28-2.38 (m, 1 H, H10), 2.77 (dd, J = 6.4, 6.8 Hz, 1 H, H7), 3.80 (s, 3 H, MPM), 4.00 (q, J = 6.4 Hz, 1 H, H8), 4.10 (d, J = 3.6 Hz, 1 H, H3), 4.25 (dd, J = 7.6, 8.0 Hz, 1 H, H5), 4.40 (dd, J = 3.6, 8.0 Hz, 1 H, H4), 4.57 (br dd, J = 6.8, 7.6 Hz, 1 H, H6), 4.60 (d, J = 11.0 Hz, 1 H, MPM), 4.83 (d, J = 11.0 Hz, 1 H, MPM), 4.89 (d, J = 12.0 Hz, 1 H, Bn), 4.95 (d, J = 12.0 Hz, 1 H, Bn), 4.97 (br dd, J = 1.0, 10.0 Hz, 1 H, H12), 5.05 (br dd, J = 1.6, 17.0 Hz, 1 H, H12), 5.05 (s, 1 H, H1), 5.78-5.89 (m, 1 H, H11), 6.81 (d, J = 8.8 Hz, 2 H, MPM), 7.21-7.40 (m, 10 H), 7.53-7.56 (m, 2 H). 13C NMR (100 MHz, CDCl3): δ = 24.7, 26.6, 30.8, 35.5, 48.8, 55.4, 68.3, 70.7, 74.4, 75.2, 77.3, 78.1, 80.2, 88.8, 94.6, 110.0, 113.7, 114.9, 127.06, 127.13, 127.2, 128.3, 129.1, 129.3, 130.9, 131.0, 136.1, 138.3, 139.4, 159.1. FT-IR (film): 3465, 3062, 3031, 2978, 2932, 2913, 2875, 2837, 1640, 1613, 1585, 1514, 1497, 1481, 1463, 1454, 1440, 1381, 1351, 1302, 1248, 1209, 1173, 1161, 1121, 1064, 1029, 913, 880, 822, 777, 739, 695 cm-1. HRMS (FAB):
m/z [M + Na]+ calcd for C36H42NaO7S: 641.2549; found: 641.2563.
To a solution of diene 25 (27.9 mg, 0.0433 mmol) in CH2Cl2 (4.3 mL) was added second generation Grubbs’ catalyst (1.4 mg, 1.6 µmol). The mixture was stirred at r.t. for 9 h and quenched with Et3N (1 mL). After concentration, the residue was purified by flash column chromatography (silica gel; hexane-EtOAc, 5:1 → 3:1) to give the tricyclic product 5 (22.4 mg, 0.0363 mmol, 84%); [α]D
29 +21.8° (c = 1.24, CHCl3). 1H NMR (400 MHz, CDCl3): δ = 1.35 (s, 3 H), 1.58 (s, 3 H), 1.79-1.88 (m, 1 H), 2.08-2.23 (m, 1 H), 2.29-2.43 (m, 2 H), 3.02 (d, J = 10.0 Hz, 1 H), 3.53 (dt, J = 3.0, 10.0 Hz, 1 H), 3.78 (s, 3 H), 4.10 (d, J = 4.0 Hz, 1 H), 4.18 (d,
J = 8.4 Hz, 1 H), 4.41 (dd, J = 4.0, 8.4 Hz, 1 H), 4.73 (d, J = 10.0 Hz, 1 H), 4.78 (d, J = 10.0 Hz, 1 H), 4.91 (br s, 1 H), 4.94 (d, J = 12.0 Hz, 1 H), 5.02 (d, J = 12.0 Hz, 1 H), 5.29 (br s, 1 H), 5.66 (ddd, J = 4.0, 6.8, 13.0 Hz, 1 H), 5.77 (br d, J = 13.0 Hz, 1 H), 6.77 (d, J = 8.8 Hz, 2 H), 7.18 (d, J = 8.8 Hz, 2 H), 7.24-7.35 (m, 5 H), 7.45 (br d, J = 7.6 Hz, 2 H), 7.54 (br d, J = 7.6 Hz, 2 H). 13C NMR (100 MHz, CDCl3):
δ = 24.4, 24.9, 26.2, 31.7, 55.4, 68.2, 71.0, 74.2, 76.3, 76.8, 78.5, 79.7, 88.7, 94.4, 110.4, 113.9, 127.0, 127.3, 127.4, 128.3, 129.2, 129.4, 130.1, 131.1, 135.3, 135.6, 139.0, 159.5. FT-IR (KBr): 3398, 3060, 2984, 2933, 2871, 2837, 1612, 1585, 1514, 1481, 1457, 1439, 1379, 1303, 1250, 1211, 1173, 1136, 1118, 1075, 1026, 970, 881, 845, 822, 738, 694 cm-1. HRMS (FAB): m/z [M + Na]+ calcd for C36H40NaO7S: 639.2392; found: 639.2413.