Synthesis 2008(8): 1165-1174  
DOI: 10.1055/s-2008-1067006
REVIEW
© Georg Thieme Verlag Stuttgart · New York

The Conversion of Primary or Secondary Alcohols with Nonaflyl Fluoride into Their Corresponding Inverted Fluorides

Helmut Vorbrüggen*
Institut für Chemie und Biochemie, Freie Universität Berlin, Takustr. 3, 14195 Berlin, Germany
e-Mail: helvor@chemie.fu-berlin.de;
Further Information

Publication History

Received 8 January 2008
Publication Date:
27 March 2008 (online)

Abstract

The present review covers new efficient conversions (fluorodehydroxylations) of aliphatic primary or secondary hydroxy groups with nonaflyl fluoride (n-C4F9SO2F; NfF) and bases such as 1,8-diazabicyclo[5.4.0]undec-7-ene (DBU), diethylamine, triethylamine or triethylamine trihydrofluoride into their corresponding (inverted) fluoro compounds. The scope, mechanisms and side reactions of these combinations of NfF with different bases are discussed.

1 Introduction

2 The Combination of NfF with DBU

3 Mechanism, Optimization and Economics of the NfF/DBU Combination

4 Side Reactions

4.1 Formation of σ-Complexes

4.2 Formation of Olefins

4.3 Interference by Neighboring Nucleophilic Groups

5 Combinations of NfF with Other Bases

6 The Different Mechanisms of Fluorodehydroxylations with NfF

6.1 With DBU

6.2 With Diethylamine

6.3 With Triethylamine or Diisopropylethylamine and Their Corresponding Trihydrofluorides

7 Summary

    References

  • 1 Park BK. Kitteringham NR. O’Neill PM. Annu. Rev. Pharmacol.  2001,  41:  443 
  • 2 Smart BE. J. Fluorine Chem.  2001,  109:  3 
  • 3 Hoffmann J. Bohlmann R. Heinrich N. Hoffmeister H. Kroll J. Künzer H. Lichtner RB. Nishino Y. Parczyk K. Sauer G. Gieschen H. Ulbrich H.-F. Schneider MR. J. Natl. Cancer Inst.  2004,  96:  210 
  • 4 Nique F, Moratille C, Roussel P, and Bousquet J. inventors;  FR2854403.  ; Chem. Abstr. 2004, 141, 395715
  • 5 Zorn L, Bohlmann R, Gallus N, Künzer H, Muhn H.-P, and Nubbemeyer R. inventors; WO  2004011663.  ; Chem. Abstr. 2004, 140, 144773
  • 6 Losert W. Loge O. Beckmann R. Skuballa W. Thierauch K.-H. Drugs Future  1989,  14:  942 
  • 7 Wittman MD. Altstadt TJ. Fairchild C. Hansel S. Johnston K. Kadow JF. Long BH. Rose WC. Vyas DM. Wu M.-J. Zoeckler ME. Bioorg. Med. Chem. Lett.  2001,  11:  809 
  • 8 Hudlicky M. Org. React.  1988,  35:  513 
  • 9 Yarovenko NN. Raksha MA. Zh. Obshch. Khim.  1959,  29:  2159 ; Chem. Abstr. 1960, 54, 9724
  • 10 Shimitsu M. Nakahara Y. Yoshioka H. Tetrahedron Lett.  1985,  26:  4207 
  • 11 Thayer A. M. Chem. Eng. News  2006,  (June 5):  15 
  • 12 Zimmer R. Webel M. Reissig H.-U. Z. Prakt. Chem.  1998,  340:  274 
  • 13 Dax K. Science of Synthesis   Vol. 34:  Percy J. Thieme; Stuttgart: 2006.  p.71 
  • 15 Bennua-Skalmowski B. Vorbrüggen H. Tetrahedron Lett.  1995,  36:  2611 
  • 16 Schwesinger R. Chimia  1985,  39:  269 
  • 17 Schwesinger R. Nachr. Chem., Tech. Lab.  1990,  38:  1214 
  • 18 Schwesinger R. Hasenfratz C. Schlemper H. Walz L. Peters E.-M. Peters K. von Schnering HG. Angew. Chem., Int. Ed. Engl.  1993,  32:  1361 
  • 20 Franz R. J. Fluorine Chem.  1980,  15:  423 
  • 21 Rozen S. Faust Y. Ben-Yakov H. Tetrahedron Lett.  1979,  1823 
  • 22 Kobayashi Y. Kumadaki I. Ohasawa A. Honda M. Hanzawa Y. Chem. Pharm. Bull.  1975,  23:  196 
  • 23 Winstein S. Grunwald E. Jones HW. J. Am. Chem. Soc.  1951,  73:  2700 
  • 24 Winstein S. Clippinger E. Fainberg AH. Heck R. Robinson CG. J. Am. Chem. Soc.  1956,  78:  328 
  • 25 Glaxo Group . inventors; FR  1489519.  ; Chem. Abstr. 1968, 69, 36359n
  • 26 Bailey EJ. Fazakerly H. Hill ME. Newall CE. Philipps GH. Stephenson L. Tuilley A. J. Chem. Soc., Chem. Commun.  1970,  106 
  • 27 Knox LH. Velarde E. Berger S. Quadriello D. Cross AD. J. Org. Chem.  1964,  29:  2187 
  • 28 Roberts JD. Chambers VC. J. Am. Chem. Soc.  1951,  73:  5034 
  • 29 Winstein S. Morse BK. Grunwald E. Jones HW. Corse J. Trifan D. Marshall H. J. Am. Chem. Soc.  1952,  74:  1127 
  • 30 Winstein S. Holness NJ. J. Am. Chem. Soc.  1955,  77:  5562 
  • 31 Eliel EL. Ro RS. Chem. Ind.  1956,  251 
  • 33 Kosower EM. Winstein S. J. Am. Chem. Soc.  1956,  78:  4347 
  • 34 Marson CM. Decreau RA. Smith KE. Synth. Commun.  2002,  32:  2125 
  • 35 Decreau RA. Marson CM. Synth. Commun.  2004,  34:  4369 
  • 36 Savu PM, and Snustad DC. inventors; US Patent  6248889.  ; Chem. Abstr. 2000, 133, 19097
  • 37 Pomeisl K. Pohl R. Holy A. Votruba I. Collect. Czech. Chem. Commun.  2005,  70:  1465 
  • 38 Lin YY. Shibahara M. Smith LL. J. Org. Chem.  1969,  34:  3530 
  • 39 Broess AIA. van Fleetm NP. Groen MB. Hamersma H. Steroids  1992,  57:  514 
  • 41 Subramanian LR. Hanack M. Chem. Ber.  1972,  105:  1465 
  • 42 Beyl V. Niederprüm H. Voss P. Liebigs Ann. Chem.  1970,  731:  58 
  • 43 Wechsberg M. inventors; DE  2725211.  ; Chem. Abstr. 1979, 90, 63620
  • 44 Höfle G. Steglich W. Vorbrüggen H. Angew. Chem., Int. Ed. Engl.  1978,  17:  569 
  • 45 Bennua-Skalmowski B. Krolikiewicz K. Vorbrüggen H. Bull. Soc. Chim. Belg.  1994,  103:  453 
  • 47 Olah GA. Yanikar YD. Balaram Gupta GB. Synthesis  1979,  36 
  • 48 Olah GA. Yanikar YD. Avarnaghi M. Synthesis  1979,  984 
  • 49 Kirzecky ND. Thompson ML. Wayne RS. J. Org. Chem.  1987,  52:  3452 
  • 50 Bakke JM. Hegbom I. J. Chem. Soc., Perkin Trans. 2  1995,  1211 
  • 53 Tewson TJ. Welch MJ. J. Org. Chem.  1978,  43:  1090 
  • 54 Zhu Z. Tian W. Liao Q. Tetrahedron Lett.  1996,  37:  8553 
  • 55 Klar U. Neef G. Vorbrüggen H. Tetrahedron Lett.  1996,  37:  7497 
  • 56 Bennua-Skalmowski B. Vorbrüggen H. Nucleosides Nucleotides  1996,  15:  739 
  • 57 Ishi A, Ootsuka T, Kanai M, Kuriyama Y, Yasumoto M, Inomiya K, and Ueda K. inventors; PCT Appl. WO  2004089968.  ; Chem. Abstr. 2004, 141, 350364
  • 58 Daubié S. Mutti S. Tetrahedron Lett.  1996,  43:  7744 
  • 59 Gramstad T. Haszeldine RN. J. Chem. Soc.  1956,  173 
  • 60 Takamatsu S. Katayama S. Hirose N. De Cock E. Schelkens G. Demillequand M. Brepoels J. Izawa K. Nucleosides, Nucleotides Nucleic Acids  2002,  21:  849 
  • 61 Yin J. Zarkowski DS. Thomas DW. Zhao MM. Huffman MA. Org. Lett.  2004,  6:  1465 
  • 62 Pleschke A. Dockner M. Schellhaas M. Käsbauer J. Heise K.-P. Eymann W. Antons S. Chim. Oggi (Chemistry Today)  2006,  24(3):  26 
  • 63 Ishi A, Kuriyama K, Sudu K, Ootsuka T, Yasumoto M, Inomiya N, Ueda K, and Tsuruta H. inventors; JP  2006008534.  ; Chem. Abstr. 2005, 144, 88557
  • 64 Clark JM. Chem. Rev.  1980,  80:  429 
14

The author thanks H.-U. Reissig of this department for quite recently drawing his attention to the review by K. Dax13 and thus also to reference 10.

19

In analogy to the ready formation of the rather stable Et3N·(HF)3,20 it is assumed that the stronger base DBU, as well as DMAP, N-methylimidazole or diethylamine, likewise add up to three equivalents of HF to form DBU·(HF)n, DMAP·(HF)n, Et2NH·(HF)n or N-methylimida-zole·(HF)n for n = 1-3. Yet DBU·(HF)3, like DMAP·(HF)3, Et3N·(HF)3, Et2NH·(HF)3 or N-methylimidazole·(HF)n can be assumed to form with excess DBU, Et3N, Et2NH or DMAP the probably more reactive species DBU·HF, DMAP·HF, Et3N·HF, Et2NH·HF or N-methylimidazole·HF!

32

Petrov, O.; et al., unpublished results.

40

The author thanks H. Yamamoto (University of Chicago) for this suggestion.

46

Bennua-Skalmowski, B.; Klar, U.; Vorbrüggen, H. Synthesis 2008, 1175.

51

Lyapkalo, Y. personal communication.

52

Bennua-Skalmowski B., Vorbrüggen H. unpublished results.