Synthesis 2008(15): 2381-2390  
DOI: 10.1055/s-2008-1067171
PAPER
© Georg Thieme Verlag Stuttgart ˙ New York

Dimeric Building Blocks for Solid-Phase Synthesis of α-Peptide-β-Peptoid Chimeras

Gitte Bonkea, Line Vedela, Matthias Wittb, Jerzy W. Jaroszewskia, Christian A. Olsen*a, Henrik Franzyk*a
a Department of Medicinal Chemistry, Faculty of Pharmaceutical Sciences, University of Copenhagen, Universitetsparken 2, 2100 Copenhagen, Denmark
Fax: +45(3533)6040; e-Mail: hf@farma.ku.dk;
b Bruker Daltonik GmbH, Fahrenheitstraße 4, 28359 Bremen, Germany
Further Information

Publication History

Received 11 December 2007
Publication Date:
08 July 2008 (online)

Abstract

Recently, a novel type of antimicrobial and proteolytically stable peptidomimetic oligomers having an α-peptide-β-peptoid chimeric backbone was reported. The present paper describes efficient protocols for the preparation of a wide range of dimeric building blocks, displaying different types of side-chains, for use in solid-phase synthesis (SPS) of libraries of this type of oligomers. The β-peptoid monomers were obtained by microwave-assisted aza-Michael additions to acrylic esters. Subsequent solution-phase peptide coupling with suitably protected α-amino acids afforded dimeric intermediates. Even sluggish peptide couplings, involving sterically hindered N-alkyl-β-alanines or amino acids with bulky side-chains, gave high yields on multigram-scale when using microwave (MW) irradiation. Protecting group and side-chain manipulations were performed as one-pot solution-phase procedures to afford ten different building blocks in good to excellent yields. Finally, the efficiency of SPS oligomerization of a representative dimer was demonstrated by preparing 10- to 16-residue homomers and by the assembly of four different building blocks to give a diversely functionalized octamer.

    References

  • 1 Kirshenbaum K. Zuckermann RN. Dill KA. Curr. Opin. Struct. Biol.  1999,  9:  530 
  • 2 Barron AE. Zuckermann RN. Curr. Opin. Chem. Biol.  1999,  3:  681 
  • For reviews, see:
  • 3a Hill DJ. Mio MJ. Prince RB. Hughes TS. Moore JS. Chem. Rev.  2001,  101:  3893 
  • 3b Goodman CM. Choi S. Handler S. DeGrado WF. Nat. Chem. Biol.  2007,  3:  252 
  • For reviews, see:
  • 4a Seebach D. Matthews JL. Chem. Commun.  1997,  2015 
  • 4b Cheng RP. Gellman SH. DeGrado WF. Chem. Rev.  2001,  101:  3219 
  • 4c Seebach D. Beck AK. Bierbaum DJ. Chem. Biodiversity  2004,  1:  1111 
  • 5 Kirshenbaum K. Barron AE. Goldsmith RA. Armand P. Bradley EK. Truong KTV. Dill KA. Cohen FE. Zuckermann RN. Proc. Natl. Acad. Sci. U.S.A.  1998,  95:  4303 
  • 6a Hanessian S. Luo X. Schaum R. Michnick S. J. Am. Chem. Soc.  1998,  120:  8569 
  • 6b Farrera-Sinfrey J. Zaccaro L. Vidal D. Salvatella X. Giralt E. Pons M. Albericio F. Royo M. J. Am. Chem. Soc.  2004,  126:  6048 
  • 7 Angelo NG. Arora PS. J. Am. Chem. Soc.  2005,  127:  17134 
  • For previous reports on achiral β-peptoids, see:
  • 8a Hamper BC. Kolodziej SA. Scates AM. Smith RG. Cortez E. J. Org. Chem.  1998,  63:  708 
  • 8b Darensbourg DJ. Phelps AL. Le Gall N. Jia L. J. Am. Chem. Soc.  2004,  126:  13808 
  • 8c Shuey SW. Delaney WJ. Shah MC. Scialdone MA. Bioorg. Med. Chem. Lett.  2006,  16:  1245 
  • 9a Norgren AS. Zhang S. Arvidsson PI. Org. Lett.  2006,  8:  4533 
  • 9b Olsen CA. Lambert M. Witt M. Franzyk H. Jaroszewski JW. Amino Acids  2008,  34:  465 
  • 9c Baldauf C. Günther R. Hofmann H.-J. Phys. Biol.  2006,  3:  1 
  • 10a De Pol S. Zorn C. Klein CD. Zerbe O. Reiser O. Angew. Chem. Int. Ed.  2004,  43:  511 
  • 10b Hayen A. Schmitt MA. Ngassa FN. Thomasson KA. Gellman SH. Angew. Chem. Int. Ed.  2004,  43:  505 
  • 10c Schmitt MA. Weisblum B. Gellman SH. J. Am. Chem. Soc.  2004,  126:  6848 
  • 11 Olsen CA. Bonke G. Vedel L. Adsersen A. Witt M. Franzyk H. Jaroszewski JW. Org. Lett.  2007,  9:  1549 
  • 12 Ranu BC. Banerjee S. Tetrahedron Lett.  2007,  48:  141 
  • 13 Narayan S. Muldoon J. Finn MJ. Fokin VV. Kolb HC. Sharpless KB. Angew. Chem. Int. Ed.  2005,  44:  3275 
  • 14 Fara MA. Díaz-Mochón JJ. Bradley M. Tetrahedron Lett.  2006,  47:  1011 
  • 15 Carpino LA. El-Faham A. J. Am. Chem. Soc.  1995,  117:  5401 
  • 16 Santagada V. Fiorino F. Perissutti E. Severino B. De Filippis V. Vivenzo B. Caliendo G. Tetrahedron Lett.  2001,  42:  5171 
  • 17 Carpino LA. Tsao J.-H. J. Chem. Soc., Chem. Commun.  1978,  358 
  • 18 Bernatowicz MS. Wu Y. Matsueda GR. Tetrahedron Lett.  1993,  34:  3389 
  • 19a Burke TR. Ye B. Akamatsu M. Ford H. Yan X. Kole HK. Wolf G. Shoelson SE. Rollner PR. J. Med. Chem.  1996,  39:  1021 
  • 19b Liu S. Dockendorff C. Taylor SD. Org. Lett.  2001,  3:  1571 
  • 19c Thoen JC. Morales-Ramos I. Lipton MA. Org. Lett.  2002,  4:  4455 
  • 19d Cordero FM. Pisaneschi F. Bastita KM. Valenza S. Machetti F. Brandi A. J. Org. Chem.  2005,  70:  856 
  • 20 Kates SA. Solé NA. Johnson CR. Hudson D. Barany G. Albericio F. Tetrahedron Lett.  1993,  34:  1549 
  • 21 Seebach D. Schreiber JV. Arvidsson PI. Franckenpohl J. Helv. Chim. Acta  2001,  84:  271 
  • 22 Vedel L. Bonke G. Foged C. Ziegler HL. Franzyk H. Jaroszewski JW. Olsen CA. ChemBioChem  2007,  8:  1781