Subscribe to RSS
DOI: 10.1055/s-2008-1067172
Asymmetric Synthesis of (2S,3S)- and (2R,3R)-α,β-Dialkyl-α-amino Acids via Alkylation of Chiral Nickel(II) Complexes of Aliphatic α-Amino Acids with Racemic α-Alkylbenzyl Bromides
Publication History
Publication Date:
08 July 2008 (online)
Abstract
This study has demonstrated that the stereochemical outcome of the direct alkylation of nickel(II) complexes derived from chiral Schiff bases of glycine, alanine, 2-aminobutyric acid, and leucine with racemic α-methylbenzyl bromide depends on the steric bulk of the corresponding amino acid residue. In particular, the alkylation of the alanine complex was found to proceed with a synthetically useful level (90% de) of stereoselectivity offering a concise synthesis of enantiomerically pure (2S,3S)- or (2R,3R)-α,β-dimethylphenylalanines.
Key words
sterically constrained amino acids - alkylation - asymmetric synthesis - kinetic resolution
- 2
Soloshonok VA.Cai C.Hruby VJ.Meervelt L. Tetrahedron 1999, 55: 12045 -
3a
Fluorine-Containing Amino Acids. Synthesis and Properties
Kukhar’ VP.Soloshonok VA. Wiley; Chichester: 1994. -
3b
O’Hagan D.Schaffrath C.Cobb S.Hamilton JTG.Murphy CD. Nature 2002, 416: 279 -
4a
Wang L.Brock A.Herberich B.Schultz PG. Science 2001, 292: 498 -
4b
Deiters A.Cropp AT.Mukherji M.Chin JW.Anderson CJ.Schultz PG. J. Am. Chem. Soc. 2003, 125: 11782 - 5
Hruby VJ.Lu G.Haskell-Luevano C.Shenderovich MD. Biopolymers (Peptide Science) 1997, 43: 219 ; and references cited therein - 6
Gibson SE.Guillo N.Tozer MJ. Tetrahedron 1999, 55: 585 ; and references cited therein - For monographs, see:
-
7a
Molecular
Conformation and Biological Interactions
Balaram P.Ramaseshan S. Indian Academy of Science; Bangalore: 1991. -
7b
Advances in
Amino Acid Mimetics and Peptidomimetics
Abell A. JAI Press Inc.; Greenwich: 1999. p.191-220 - 8 Special issue on Protein
Design, Guest Editor
DeGrado WF. Chem. Rev. 2001, 101: 3025-3032 - 9 For a recent collection of papers,
see the Special Issue: Asymmetric Synthesis
of Novel Sterically Constrained Amino Acids, Tetrahedron Symposia-in-Print # 88;
Guest Editors
Hruby VJ.Soloshonok VA. Tetrahedron 2001, 57: 6329-6650 - For general reviews on asymmetric synthesis of α-amino acids, see:
-
10a
Cativiela C.Diaz-de-Villegas MD. Tetrahedron: Asymmetry 1998, 9: 3517 -
10b
Cativiela C.Diaz-de-Villegas MD. Tetrahedron: Asymmetry 2000, 11: 654 -
10c
Duthaler RO. Tetrahedron 1994, 50: 1539 -
10d
Nájera C.Sansano JM. Chem. Rev. 2007, 107: 4584 - 11
Gomez-Catalan J.Perez JJ.Jimenez AI.Cativiela C. J. Pept. Sci. 1999, 5: 251 -
12a
Masumoto S.Usuda H.Suzuki M.Kanai M.Shibasaki M. J. Am. Chem. Soc. 2003, 125: 5634 -
12b
Kato N.Suzuki M.Kanai M.Shibasaki M. Tetrahedron Lett. 2004, 45: 3147 -
12c
Kato N.Suzuki M.Kanai M.Shibasaki M. Tetrahedron Lett. 2004, 45: 3153 -
12d
Fujimori I.Mita T.Maki K.Shiro M.Sato A.Furusho S.Kanai M.Shibasaki M. J. Am. Chem. Soc. 2006, 128: 16438 -
12e
Fujimori I.Mita T.Maki K.Shiro M.Sato A.Furusho S.Kanai M.Shibasaki M. Tetrahedron 2007, 63: 5820 -
13a
Ooi T.Uematsu Y.Maruoka K. J. Am. Chem. Soc. 2006, 128: 2548 -
13b
Ooi T.Uematsu Y.Fujimoto J.Fukumoto K.Maruoka K. Tetrahedron Lett. 2007, 48: 1337 -
13c
Ooi T.Kato D.Inamura K.Ohmatsu K.Maruoka K. , -
14a
Ohfune Y.Shinada T. Eur. J. Org. Chem. 2005, 5127 -
14b
Ohfune Y.Shinada T. Bull. Chem. Soc. Jpn. 2003, 76: 1115 -
14c
Namba K.Shinada T.Teramoto T.Ohfune Y. J. Am. Chem. Soc. 2000, 122: 10708 -
14d
Moon S.-H.Ohfune Y. J. Am. Chem. Soc. 1994, 116: 7405 -
15a
Davis FA.Liang C.-H.Liu H. J. Org. Chem. 1997, 62: 3796 -
15b
Davis FA.Liu H.Zhou P.Fang T.Reddy GV.Zhang Y. J. Org. Chem. 1999, 64: 7559 -
16a
Fitzi R.Seebach D. Tetrahedron 1988, 44: 5277 -
16b
Kazmierski WM.Urbanczyk-Lipkowska Z.Hruby VJ. J. Org. Chem. 1994, 59: 1789 - 17
Soloshonok VA.Tang X.Hruby VJ.Meervelt LV. Org. Lett. 2001, 3: 341 - For selected recent reviews, see:
-
18a
Calmes M.Daunis J. Amino Acids 1999, 16: 215 -
18b
Bouifraden S.Drouot C.El Hadrami M.Guenoun F.Lecointe L.Mai N.Paris M.Pothion C.Sadoune M.Sauvagnat B.Amblard M.Aubagnac JL.Calmes M.Chevallet P.Daunis J.Enjal-bal C.Fehrentz JA.Lamaty F.Lavergne JP.Lazaro R.Rolland V.Roumestant ML.Viallefont P.Vidal Y.Martinez J. Amino Acids 1999, 16: 345 -
18c
Sutherland A.Willis CL. Nat. Prod. Rep. 2000, 17: 621 -
18d
Beller M.Eckert M. Angew. Chem. Int. Ed. 2000, 39: 1010 -
18e
Kawabata T.Fuji K. Synth. Org. Chem. Jpn. 2000, 58: 1095 -
18f
Kazmaier U.Maier S.Zumpe FL. Synlett 2000, 1523 -
18g
Yao SL.Saaby S.Hazell RG.Jorgensen KA. Chem. Eur. J. 2000, 6: 2435 -
18h
Abellan T.Chinchilla R.Galindo N.Guillena G.Najera C.Sansano JM. Eur. J. Org. Chem. 2000, 2689 -
18i
Rutjes FPJT.Wolf LB.Schoemaker HE. J. Chem. Soc., Perkin Trans. 1 2000, 4197 -
18j
Shioiri T.Hamada Y. Synlett 2001, 184 -
18k
Williams RM. Synthesis of Optically Active α-Amino Acids Pergamon Press; Oxford: 1989. -
19a
Belokon YN. Janssen Chim. Acta 1992, 10 (2): 4 -
19b
Belokon YN. Pure Appl. Chem. 1992, 64: 1917 - 20
Ueki H.Ellis TK.Martin CH.Bolene SB.Boettiger TU.Soloshonok VA. J. Org. Chem. 2003, 68: 7104 -
21a
Andronova IG.Maleev VI.Ragulin VV.Il’in MM.Tsvetkov EN.Belokon’ YuN. Zh. Obshch. Khim. 1996, 66: 1096 -
21b
Tararov VI.Savel’eva TF.Kuznetsov NYu.Ikonnikov NS.Orlova SA.Belokon’ YuN.North M. Tetrahedron: Asymmetry 1997, 8: 79 -
21c
Sagiyan AS.Dzhamgaryan SM.Grigoryan GL.Kagramanyan SR.Ovsepyan GTs.Grigoryan SK.Belokon’ YuN. Khimich. Zh. Armenii 1996, 49: 75 -
21d
Sagiyan AS.Grigoryan SK.Dzhamgaryan SM.Grigoryan GL.Belokon’ YuN. Khimich. Zh. Armenii 1996, 49: 142 -
21e
Belokon’ YN.Kochetkov KA.Ikonnikov NS.Strelkova TV.Harutyunyan SR.Saghiyan AS. Tetrahedron: Asymmetry 2001, 12: 481 -
21f
Larionov OV.Savel’eva TF.Kochetkov KA.Ikonnokov NS.Kozhushkov SI.Yufit DS.Howard JAK.Khrustalev VN.Belokon YN.de Meijere A. Eur. J. Org. Chem. 2003, 869 -
21g
Belokon YN.Kochetkov KA.Borkin DA. Mendeleev Commun. 2003, 132 -
21h
Belokon YN.Maleev VI.Savel’eva TF.Moskalenko MA.Pripadchev DA.Khrustalev VN.Vorontsov EV.Sagiyan AS.Babayan EP. Russ. Chem. Bull. 2005, 54: 981 -
22a
Soloshonok VA.Belokon YN.Kukhar VP.Chernoglazova NI.Saporovskaya MB.Bakhmutov VI.Kolycheva MT.Belikov VM. Izv. Akad. Nauk SSSR, Ser. Khim. 1990, 1630 -
22b
Soloshonok VA.Kukhar VP.Galushko SV.Kolycheva MT.Rozhenko AB.Belokon YN. Izv. Akad. Nauk SSSR, Ser. Khim. 1991, 1166 -
22c
Soloshonok VA.Kukhar VP.Batsanov AS.Galakhov MA.Belokon YN.Struchkov YT. Izv. Akad. Nauk SSSR, Ser. Khim. 1991, 1548 -
22d
Soloshonok VA.Kukhar VP.Galushko SV.Rozhenko AB.Kuzmina NA.Kolycheva MT.Belokon YN. Izv. Akad. Nauk SSSR, Ser. Khim. 1991, 1906 -
22e
Soloshonok VA.Svistunova NY.Kukhar VP.Gudima AO.Kuzmina NA.Belokon YN. Izv. Akad. Nauk SSSR, Ser. Khim. 1992, 117 -
22f Soloshonok V. A., Svistunova
N. Y., Kukhar V. P., Solodenko V. A., Kuzmina N. A., Rozhenko A.
B., Galushko S. V., Shishkina I. P., Gudima A. O., Belokon Y. N.; Izv. Akad. Nauk SSSR, Ser. Khim.; 1992, 397
-
22g
Soloshonok VA.Svistunova NY.Kukhar VP.Kuzmina NA.Belokon YN. Izv. Akad. Nauk SSSR, Ser. Khim. 1992, 687 -
22h
Soloshonok VA.Belokon YN.Kuzmina NA.Maleev VI.Svistunova NY.Solodenko VA.Kukhar VP. J. Chem. Soc., Perkin Trans. 1 1992, 1525 -
22i
Kukhar VP.Belokon YN.Svistunova NY.Soloshonok VA.Rozhenko AB.Kuzmina NA. Synthesis 1993, 117 -
22j
Soloshonok VA.Svistunova NY.Kukhar VP.Kuzmina NA.Popov VI.Belokon YN. Izv. Akad. Nauk SSSR, Ser. Khim. 1993, 786 -
22k
Soloshonok VA.Kukhar VP.Galushko SV.Svistunova NY.Avilov DV.Kuzmina NA.Raevski NI.Struchkov YT.Pisarevsky AP.Belokon YN. J. Chem. Soc., Perkin Trans. 1 1993, 3143 -
22l
Kukhar VP.Luik AI.Soloshonok VA.Svistunova NY.Skryma RN.Rybalchenko VV.Belokon YN.Kuzmina NA. Khim. Pharm. Zh. 1994, 27: 35 -
22m
Soloshonok VA.Avilov DV.Kukhar VP.Tararov VI.Saveleva TF.Churkina TD.Ikonnikov NS.Kochetkov KA.Orlova SA.Pysarevsky AP.Struchkov YT.Raevsky NI.Belokon YN. Tetrahedron: Asymmetry 1995, 6: 1741 -
22n
Soloshonok VA.Gerus II.Yagupolskii YL.Kukhar VP. Zh. Org. Khim. 1987, 23: 2308 ; Chem. Abstr. 1988, 109, 55185 -
22o
Basyuk VA.Gromovoi TY.Chuiko AA.Soloshonok VA.Kukhar VP. Synthesis 1992, 449 -
23a
Soloshonok VA.Avilov DV.Kukhar VP. Tetrahedron: Asymmetry 1996, 7: 1547 -
23b
Soloshonok VA.Avilov DV.Kukhar VP. Tetrahedron 1996, 52: 12433 -
23c
Soloshonok VA.Avilov DV.Kukhar’ VP.Meervelt LV.Mischenko N. Tetrahedron Lett. 1997, 38: 4671 -
23d
Soloshonok VA.Avilov DV.Kukhar’ VP.Meervelt LV.Mischenko N. Tetrahedron Lett. 1997, 38: 4903 -
23e
Soloshonok VA.Cai C.Hruby VJ.Meervelt LV.Mischenko N. Tetrahedron 1999, 55: 12031 -
23f
Soloshonok VA.Cai C.Hruby VJ.Meervelt LV. Tetrahedron 1999, 55: 12045 -
23g
Soloshonok VA.Cai C.Hruby VJ. Tetrahedron: Asymmetry 1999, 10: 4265 -
23h
Soloshonok VA.Cai C.Hruby VJ. Tetrahedron Lett. 2000, 41: 135 -
23i
Soloshonok VA.Cai C.Hruby VJ. Org. Lett. 2000, 2: 747 -
23j
Qiu W.Soloshonok VA.Cai C.Tang X.Hruby VJ. Tetrahedron 2000, 56: 2577 -
23k
Soloshonok VA.Cai C.Hruby VJA. Angew. Chem. Int. Ed. 2000, 39: 2172 -
23l
Tang X.Soloshonok VA.Hruby VJ. Tetrahedron: Asymmetry 2000, 11: 2917 -
23m
Soloshonok VA.Cai C.Hruby VJ.Meervelt LV.Yamazaki T. J. Org. Chem. 2000, 65: 6688 -
23n
Soloshonok VA.Cai C.Hruby VJ. Tetrahedron Lett. 2000, 41: 9645 -
23o
Cai C.Soloshonok VA.Hruby VJ. J. Org. Chem. 2001, 66: 1339 -
23p
Soloshonok VA.Tang X.Hruby VJ. Tetrahedron 2001, 57: 6375 -
23q
Soloshonok VA. Curr. Org. Chem. 2002, 6: 341 -
23r
Ellis TK.Hochla VM.Soloshonok VA. J. Org. Chem. 2003, 68: 4973 -
23s
Taylor SM.Yamada T.Ueki H.Soloshonok VA. Tetrahedron Lett. 2004, 45: 9159 -
23t
Soloshonok VA.Cai C.Yamada T.Ueki H.Ohfune Y.Hruby VJ. J. Am. Chem. Soc. 2005, 127: 15296 -
23u
Soloshonok VA.Yamada T.Ueki H.Moore AM.Cook TK.Arbogast KL.Soloshonok AV.Martin CH.Ohfune Y. Tetrahedron 2006, 62: 6412 -
23v
Soloshonok VA.Ueki H. J. Am. Chem. Soc. 2007, 129: 2426 -
24a
Fishwick CWG.Sanderson JM.Findlay JBC. Tetrahedron Lett. 1994, 35: 4611 -
24b
Chen B.-H.Nie J.-Y.Singh M.Pike VW.Kirk KL. J. Fluorine Chem. 1995, 75: 93 -
24c
Kliukiene R.Maroziene A.Stumbreviciute Z.Karpavicius K. Chemija 1996, 3: 76 -
24d
Mosevich IK.Kuznetsova OF.Fedorova OS.Korsakov MV. Radiochemistry (Moscow) 1996, 38: 511 -
24e
Jirman J.Nadvornik M.Sopkova J.Popkov A. Magn. Reson. Chem. 1998, 36: 351 -
24f
Collet S.Bauchat P.Danion-Bougot R.Danion D. Tetrahedron: Asymmetry 1998, 9: 2121 -
24g
Popkov A.Jirman J.Nadvornik M.Manorik PA. Collect. Czech. Chem. Commun. 1998, 63: 990 -
24h
Popkov AN.Nadvornik M.Iirman I.Sopkova Ya.Manorik PA.Fedorenko MA. Russ. J. Gen. Chem. 1998, 68: 1242 -
24i
Mosevich IK.Kuznetsova OF.Vasil’ev DA.Anichkov AA.Korsakov MV. Radiochemistry (Moscow) 1999, 41: 273 -
24j
Collet S.Carreaux F.Boucher J.-L.Pethe S.Lepoivre M.Danion-Bougot R.Danion D. J. Chem. Soc., Perkin Trans. 1 2000, 177 -
24k
Debache A.Collet S.Bauchat P.Danion D.Euzenat L.Hercouet A.Carboni B. Tetrahedron: Asymmetry 2001, 12: 761 -
24l
Nadvornik M.Popkov A. Green Chem. 2002, 4: 71 -
24m
Gu X.Tang X.Cowell S.Ying J.Hruby VJ. Tetrahedron Lett. 2002, 43: 6669 -
24n
Hashimoto M.Hatanaka Y.Sadakane Y.Nabeta K. Bioorg. Med. Chem. Lett. 2002, 12: 2507 -
24o
Zhang J.Xiong C.Ying J.Wang W.Hruby VJ. Org. Lett. 2003, 5: 3115 -
24p
Chaykovski MM.Bae LC.Cheng M.-C.Murray JH.Tortolani KE.Zhang R.Seshadri K.Findlay JHBC.Hsieh S.-Y.Kalverda AP.Homans SW.Brown JM. J. Am. Chem. Soc. 2003, 125: 15767 -
24q
Gu X.Ndungu JM.Qiu W.Ying J.Carducci MD.Wooden H.Hruby VJ. Tetrahedron 2004, 60: 8233 -
24r
Hao B.Zhao G.Kang PT.Soares JA.Ferguson TK.Gallucci J.Krzycki JA.Chan MK. Chem. Biol. 2004, 11: 1317 -
24s
Ouchi H.Kumagai M.Sakurada S.Takahata H. Heterocycles 2004, 64: 505 -
24t
Ghalit N.Poot AJ.Fuerstner A.Rijkers DTS.Liskamp RMJ. Org. Lett. 2005, 7: 2961 -
24u
Pessoa JC.Correia I.Galvao A.Gameiro A.Felix V.Fiuza E. Dalton Trans. 2005, 2312 -
24v
Vadon-Legoff S.Dijols S.Mansuy D.Boucher J.-L. Org. Process Res. Dev. 2005, 9: 677 -
24w
Popkov A.Cisarova I.Sopkova J.Jirman J.Lycka A.Kochetkov KA. Collect. Czech. Chem. Commun 2005, 70: 1397 -
24x
Saghiyan AS.Dadayan SA.Petrosyan SG.Manasyan LL.Geolchanyan AV.Djamgaryan SM.Andreasyan SA.Maleev VI.Khrustalev VN. Tetrahedron: Asymmetry 2006, 17: 455 -
24y
Saghiyan AS.Geolchanyan AV. Synth. Commun. 2006, 36: 3667 -
24z
Langer V.Popkov A.Nadvornik M.Lycka A. Polyhedron 2007, 26: 911 - 26 For the complex containing (2S,3R)-3-phenylglutamic
acid, the α-proton appears at δ = 4.14
(J
α
H,
β
H = 3.7
Hz); for the complex containing (2S,3S)-3-phenylglutamic acid, the α-proton
is at δ = 4.07 (J
α
H,
β
H = 7.0
Hz); for details, see:
Belokon’ YuN.Bulychev AG.Ryzhov MG.Vitt SV.Batsanov AS.Struchkov YuT.Bakhmutov VI.Belikov VM. J. Chem. Soc., Perkin Trans. 1 1986, 1865 - 27
Dharanipragada R.VanHulle K.Bannister A.Bear S.Kennedy L.Hruby VJ. Tetrahedron 1992, 48: 4733 -
28a
Soloshonok VA.Cai C.Hruby VJ. Tetrahedron: Asymmetry 1999, 10: 4265 -
28b
Soloshonok VA.Cai C.Hruby VJ. Tetrahedron Lett. 2000, 41: 135 -
28c
Soloshonok VA.Cai C.Hruby VJ. Org. Lett. 2000, 2: 747 -
28d
Soloshonok VA.Cai C.Hruby VJ. Angew. Chem. Int. Ed. 2000, 39: 2172 -
28e
Soloshonok VA.Cai C.Hruby VJ.Meervelt LV.Yamazaki T. J. Org. Chem. 2000, 65: 6688 -
28f
Soloshonok VA.Cai C.Hruby VJ. Tetrahedron Lett. 2000, 41: 9645 -
28g
Cai C.Soloshonok VA.Hruby VJ. J. Org. Chem. 2001, 66: 1339 -
28h
Soloshonok VA.Ueki H.Tiwari R.Cai C.Hruby VJ. J. Org. Chem. 2004, 69: 4984 -
28i
Cai C.Yamada T.Tiwari R.Hruby VJ.Soloshonok VA. Tetrahedron Lett. 2004, 45: 6855 -
28j
Soloshonok VA.Ueki H.Ellis TK. Tetrahedron Lett. 2005, 46: 941 -
28k
Soloshonok VA.Ueki H.Ellis TK.Yamada T.Ohfune Y. Tetrahedron Lett. 2005, 46: 1107 -
28l
Soloshonok VA.Ellis TK. Synlett 2006, 533 -
28m
Ellis TK.Ueki H.Yamada T.Ohfune Y.Soloshonok VA. J. Org. Chem. 2006, 71: 8572
References
As we recently pointed out (see ref. 2), the terms unnatural, unusual, or nonproteinogenic, noncoded amino acids depend on the success of specific scientific achievements. For instance, amino acids containing the most xenobiotic element fluorine were shown to be synthesized by microorganisms (see ref. 3), and also new amino acids can be added to genetic code of microorganisms (see ref. 4). Therefore, the time-independent term tailor-made, meaning rationally designed/synthesized amino acids, in the absence of a better definition, is used in this paper and generally recommended for use in the corresponding literature.
25As shown previously (see refs. 21-23), CD and ORD spectra of Ni(II) complexes of this type in neutral solutions exhibit two maxima in the region of metal d-d transition (Cotton effects at 450 and 550 nm). In the ORD spectra, the sign of Cotton effects in this region strictly depends upon a conformation of the polycyclic system of chelate rings. Thus, in the case of complexes containing α-monosub-stituted α-amino acid, the pseudoaxial orientation of the amino acid side chain, corresponding to α-l configuration of α-amino acid, causes a Cotton effect with a positive sign at the 500-700 nm region and negative sign at 400-450 nm. Consequently, a pseudoequatorial orientation of the amino acid side chain brings about opposite signs of the Cotton effects at 400-450 (positive) and at the 500-700 nm (negative) regions. As established in numerous studies, this general trend is not influenced by the structure and nature of the α-amino acid side chain, and the configuration of stereogenic centers within it.