Abstract
This study has demonstrated that the stereochemical outcome of
the direct alkylation of nickel(II) complexes derived from chiral
Schiff bases of glycine, alanine, 2-aminobutyric acid, and leucine
with racemic α-methylbenzyl bromide depends on the steric bulk
of the corresponding amino acid residue. In particular, the alkylation
of the alanine complex was found to proceed with a synthetically
useful level (90% de) of stereoselectivity offering a concise
synthesis of enantiomerically pure (2S ,3S )- or (2R ,3R )-α,β-dimethylphenylalanines.
Key words
sterically constrained amino acids - alkylation - asymmetric
synthesis - kinetic resolution
References 1 As we recently pointed out (see ref.
2), the terms unnatural, unusual, or nonproteinogenic, noncoded
amino acids depend on the success of specific scientific achievements.
For instance, amino acids containing the most xenobiotic element
fluorine were shown to be synthesized by microorganisms (see ref.
3), and also new amino acids can be added to genetic code of microorganisms
(see ref. 4). Therefore, the time-independent term tailor-made,
meaning rationally designed/synthesized amino acids, in
the absence of a better definition, is used in this paper and generally recommended
for use in the corresponding literature.
2
Soloshonok VA.
Cai C.
Hruby VJ.
Meervelt L.
Tetrahedron
1999,
55:
12045
3a
Fluorine-Containing Amino Acids . Synthesis and Properties
Kukhar’ VP.
Soloshonok VA.
Wiley;
Chichester:
1994.
3b
O’Hagan D.
Schaffrath C.
Cobb S.
Hamilton JTG.
Murphy CD.
Nature
2002,
416:
279
4a
Wang L.
Brock A.
Herberich B.
Schultz PG.
Science
2001,
292:
498
4b
Deiters A.
Cropp AT.
Mukherji M.
Chin JW.
Anderson CJ.
Schultz PG.
J. Am.
Chem. Soc.
2003,
125:
11782
5
Hruby VJ.
Lu G.
Haskell-Luevano C.
Shenderovich MD.
Biopolymers
(Peptide Science)
1997,
43:
219 ;
and references cited therein
6
Gibson SE.
Guillo N.
Tozer MJ.
Tetrahedron
1999,
55:
585 ; and references cited therein
For monographs, see:
7a
Molecular
Conformation and Biological Interactions
Balaram P.
Ramaseshan S.
Indian
Academy of Science;
Bangalore:
1991.
7b
Advances in
Amino Acid Mimetics and Peptidomimetics
Abell A.
JAI Press Inc.;
Greenwich:
1999.
p.191-220
8 Special issue on Protein
Design , Guest Editor DeGrado WF.
Chem.
Rev.
2001,
101:
3025-3032
9 For a recent collection of papers,
see the Special Issue: Asymmetric Synthesis
of Novel Sterically Constrained Amino Acids , Tetrahedron Symposia-in-Print # 88;
Guest Editors Hruby VJ.
Soloshonok VA.
Tetrahedron
2001,
57:
6329-6650
For general reviews on asymmetric
synthesis of α-amino acids, see:
10a
Cativiela C.
Diaz-de-Villegas MD.
Tetrahedron:
Asymmetry
1998,
9:
3517
10b
Cativiela C.
Diaz-de-Villegas MD.
Tetrahedron:
Asymmetry
2000,
11:
654
10c
Duthaler RO.
Tetrahedron
1994,
50:
1539
10d
Nájera C.
Sansano JM.
Chem.
Rev.
2007,
107:
4584
11
Gomez-Catalan J.
Perez JJ.
Jimenez AI.
Cativiela C.
J. Pept.
Sci.
1999,
5:
251
12a
Masumoto S.
Usuda H.
Suzuki M.
Kanai M.
Shibasaki M.
J. Am. Chem. Soc.
2003,
125:
5634
12b
Kato N.
Suzuki M.
Kanai M.
Shibasaki M.
Tetrahedron Lett.
2004,
45:
3147
12c
Kato N.
Suzuki M.
Kanai M.
Shibasaki M.
Tetrahedron Lett.
2004,
45:
3153
12d
Fujimori I.
Mita T.
Maki K.
Shiro M.
Sato A.
Furusho S.
Kanai M.
Shibasaki M.
J.
Am. Chem. Soc.
2006,
128:
16438
12e
Fujimori I.
Mita T.
Maki K.
Shiro M.
Sato A.
Furusho S.
Kanai M.
Shibasaki M.
Tetrahedron
2007,
63:
5820
13a
Ooi T.
Uematsu Y.
Maruoka K.
J. Am. Chem. Soc.
2006,
128:
2548
13b
Ooi T.
Uematsu Y.
Fujimoto J.
Fukumoto K.
Maruoka K.
Tetrahedron
Lett.
2007,
48:
1337
13c
Ooi T.
Kato D.
Inamura K.
Ohmatsu K.
Maruoka K.
,
14a
Ohfune Y.
Shinada T.
Eur.
J. Org. Chem.
2005,
5127
14b
Ohfune Y.
Shinada T.
Bull. Chem. Soc. Jpn.
2003,
76:
1115
14c
Namba K.
Shinada T.
Teramoto T.
Ohfune Y.
J. Am. Chem. Soc.
2000,
122:
10708
14d
Moon S.-H.
Ohfune Y.
J. Am. Chem. Soc.
1994,
116:
7405
15a
Davis FA.
Liang C.-H.
Liu H.
J. Org. Chem.
1997,
62:
3796
15b
Davis FA.
Liu H.
Zhou P.
Fang T.
Reddy GV.
Zhang Y.
J. Org. Chem.
1999,
64:
7559
16a
Fitzi R.
Seebach D.
Tetrahedron
1988,
44:
5277
16b
Kazmierski WM.
Urbanczyk-Lipkowska Z.
Hruby VJ.
J. Org. Chem.
1994,
59:
1789
17
Soloshonok VA.
Tang X.
Hruby VJ.
Meervelt LV.
Org. Lett.
2001,
3:
341
For selected recent reviews, see:
18a
Calmes M.
Daunis J.
Amino Acids
1999,
16:
215
18b
Bouifraden S.
Drouot C.
El Hadrami M.
Guenoun F.
Lecointe L.
Mai N.
Paris M.
Pothion C.
Sadoune M.
Sauvagnat B.
Amblard M.
Aubagnac JL.
Calmes M.
Chevallet P.
Daunis J.
Enjal-bal C.
Fehrentz JA.
Lamaty F.
Lavergne JP.
Lazaro R.
Rolland V.
Roumestant ML.
Viallefont P.
Vidal Y.
Martinez J.
Amino Acids
1999,
16:
345
18c
Sutherland A.
Willis CL.
Nat. Prod. Rep.
2000,
17:
621
18d
Beller M.
Eckert M.
Angew. Chem. Int. Ed.
2000,
39:
1010
18e
Kawabata T.
Fuji K.
Synth. Org. Chem. Jpn.
2000,
58:
1095
18f
Kazmaier U.
Maier S.
Zumpe FL.
Synlett
2000,
1523
18g
Yao SL.
Saaby S.
Hazell RG.
Jorgensen KA.
Chem.
Eur. J.
2000,
6:
2435
18h
Abellan T.
Chinchilla R.
Galindo N.
Guillena G.
Najera C.
Sansano JM.
Eur. J. Org. Chem.
2000,
2689
18i
Rutjes FPJT.
Wolf LB.
Schoemaker HE.
J. Chem. Soc., Perkin
Trans. 1
2000,
4197
18j
Shioiri T.
Hamada Y.
Synlett
2001,
184
18k
Williams RM.
Synthesis of Optically Active α-Amino
Acids
Pergamon Press;
Oxford:
1989.
19a
Belokon YN.
Janssen Chim. Acta
1992,
10
(2):
4
19b
Belokon YN.
Pure Appl. Chem.
1992,
64:
1917
20
Ueki H.
Ellis TK.
Martin CH.
Bolene SB.
Boettiger TU.
Soloshonok VA.
J.
Org. Chem.
2003,
68:
7104
21a
Andronova IG.
Maleev VI.
Ragulin VV.
Il’in MM.
Tsvetkov EN.
Belokon’ YuN.
Zh. Obshch.
Khim.
1996,
66:
1096
21b
Tararov VI.
Savel’eva TF.
Kuznetsov NYu.
Ikonnikov NS.
Orlova SA.
Belokon’ YuN.
North M.
Tetrahedron:
Asymmetry
1997,
8:
79
21c
Sagiyan AS.
Dzhamgaryan SM.
Grigoryan GL.
Kagramanyan SR.
Ovsepyan GTs.
Grigoryan SK.
Belokon’ YuN.
Khimich.
Zh. Armenii
1996,
49:
75
21d
Sagiyan AS.
Grigoryan SK.
Dzhamgaryan SM.
Grigoryan GL.
Belokon’ YuN.
Khimich.
Zh. Armenii
1996,
49:
142
21e
Belokon’ YN.
Kochetkov KA.
Ikonnikov NS.
Strelkova TV.
Harutyunyan SR.
Saghiyan AS.
Tetrahedron: Asymmetry
2001,
12:
481
21f
Larionov OV.
Savel’eva TF.
Kochetkov KA.
Ikonnokov NS.
Kozhushkov SI.
Yufit DS.
Howard JAK.
Khrustalev VN.
Belokon YN.
de Meijere A.
Eur.
J. Org. Chem.
2003,
869
21g
Belokon YN.
Kochetkov KA.
Borkin DA.
Mendeleev Commun.
2003,
132
21h
Belokon YN.
Maleev VI.
Savel’eva TF.
Moskalenko MA.
Pripadchev DA.
Khrustalev VN.
Vorontsov EV.
Sagiyan AS.
Babayan EP.
Russ. Chem.
Bull.
2005,
54:
981
22a
Soloshonok VA.
Belokon YN.
Kukhar VP.
Chernoglazova NI.
Saporovskaya MB.
Bakhmutov VI.
Kolycheva MT.
Belikov VM.
Izv.
Akad. Nauk SSSR, Ser. Khim.
1990,
1630
22b
Soloshonok VA.
Kukhar VP.
Galushko SV.
Kolycheva MT.
Rozhenko AB.
Belokon YN.
Izv. Akad. Nauk SSSR, Ser. Khim.
1991,
1166
22c
Soloshonok VA.
Kukhar VP.
Batsanov AS.
Galakhov MA.
Belokon YN.
Struchkov YT.
Izv. Akad. Nauk SSSR, Ser. Khim.
1991,
1548
22d
Soloshonok VA.
Kukhar VP.
Galushko SV.
Rozhenko AB.
Kuzmina NA.
Kolycheva MT.
Belokon YN.
Izv. Akad.
Nauk SSSR, Ser. Khim.
1991,
1906
22e
Soloshonok VA.
Svistunova NY.
Kukhar VP.
Gudima AO.
Kuzmina NA.
Belokon YN.
Izv. Akad. Nauk SSSR, Ser. Khim.
1992,
117
22f Soloshonok V. A., Svistunova
N. Y., Kukhar V. P., Solodenko V. A., Kuzmina N. A., Rozhenko A.
B., Galushko S. V., Shishkina I. P., Gudima A. O., Belokon Y. N.; Izv. Akad. Nauk SSSR, Ser. Khim. ; 1992 , 397
22g
Soloshonok VA.
Svistunova NY.
Kukhar VP.
Kuzmina NA.
Belokon YN.
Izv. Akad. Nauk SSSR, Ser.
Khim.
1992,
687
22h
Soloshonok VA.
Belokon YN.
Kuzmina NA.
Maleev VI.
Svistunova NY.
Solodenko VA.
Kukhar VP.
J.
Chem. Soc., Perkin Trans. 1
1992,
1525
22i
Kukhar VP.
Belokon YN.
Svistunova NY.
Soloshonok VA.
Rozhenko AB.
Kuzmina NA.
Synthesis
1993,
117
22j
Soloshonok VA.
Svistunova NY.
Kukhar VP.
Kuzmina NA.
Popov VI.
Belokon YN.
Izv. Akad. Nauk SSSR, Ser. Khim.
1993,
786
22k
Soloshonok VA.
Kukhar VP.
Galushko SV.
Svistunova NY.
Avilov DV.
Kuzmina NA.
Raevski NI.
Struchkov YT.
Pisarevsky AP.
Belokon YN.
J. Chem. Soc., Perkin
Trans. 1
1993,
3143
22l
Kukhar VP.
Luik AI.
Soloshonok VA.
Svistunova NY.
Skryma RN.
Rybalchenko VV.
Belokon YN.
Kuzmina NA.
Khim. Pharm. Zh.
1994,
27:
35
22m
Soloshonok VA.
Avilov DV.
Kukhar VP.
Tararov VI.
Saveleva TF.
Churkina TD.
Ikonnikov NS.
Kochetkov KA.
Orlova SA.
Pysarevsky AP.
Struchkov YT.
Raevsky NI.
Belokon YN.
Tetrahedron: Asymmetry
1995,
6:
1741
22n
Soloshonok VA.
Gerus II.
Yagupolskii YL.
Kukhar VP.
Zh.
Org. Khim.
1987,
23:
2308 ; Chem. Abstr. 1988 , 109 , 55185
22o
Basyuk VA.
Gromovoi TY.
Chuiko AA.
Soloshonok VA.
Kukhar VP.
Synthesis
1992,
449
23a
Soloshonok VA.
Avilov DV.
Kukhar VP.
Tetrahedron:
Asymmetry
1996,
7:
1547
23b
Soloshonok VA.
Avilov DV.
Kukhar VP.
Tetrahedron
1996,
52:
12433
23c
Soloshonok VA.
Avilov DV.
Kukhar’ VP.
Meervelt LV.
Mischenko N.
Tetrahedron Lett.
1997,
38:
4671
23d
Soloshonok VA.
Avilov DV.
Kukhar’ VP.
Meervelt LV.
Mischenko N.
Tetrahedron Lett.
1997,
38:
4903
23e
Soloshonok VA.
Cai C.
Hruby VJ.
Meervelt LV.
Mischenko N.
Tetrahedron
1999,
55:
12031
23f
Soloshonok VA.
Cai C.
Hruby VJ.
Meervelt LV.
Tetrahedron
1999,
55:
12045
23g
Soloshonok VA.
Cai C.
Hruby VJ.
Tetrahedron: Asymmetry
1999,
10:
4265
23h
Soloshonok VA.
Cai C.
Hruby VJ.
Tetrahedron Lett.
2000,
41:
135
23i
Soloshonok VA.
Cai C.
Hruby VJ.
Org. Lett.
2000,
2:
747
23j
Qiu W.
Soloshonok VA.
Cai C.
Tang X.
Hruby VJ.
Tetrahedron
2000,
56:
2577
23k
Soloshonok VA.
Cai C.
Hruby VJA.
Angew. Chem. Int. Ed.
2000,
39:
2172
23l
Tang X.
Soloshonok VA.
Hruby VJ.
Tetrahedron: Asymmetry
2000,
11:
2917
23m
Soloshonok VA.
Cai C.
Hruby VJ.
Meervelt LV.
Yamazaki T.
J. Org. Chem.
2000,
65:
6688
23n
Soloshonok VA.
Cai C.
Hruby VJ.
Tetrahedron Lett.
2000,
41:
9645
23o
Cai C.
Soloshonok VA.
Hruby VJ.
J. Org. Chem.
2001,
66:
1339
23p
Soloshonok VA.
Tang X.
Hruby VJ.
Tetrahedron
2001,
57:
6375
23q
Soloshonok VA.
Curr. Org. Chem.
2002,
6:
341
23r
Ellis TK.
Hochla VM.
Soloshonok VA.
J. Org. Chem.
2003,
68:
4973
23s
Taylor SM.
Yamada T.
Ueki H.
Soloshonok VA.
Tetrahedron Lett.
2004,
45:
9159
23t
Soloshonok VA.
Cai C.
Yamada T.
Ueki H.
Ohfune Y.
Hruby VJ.
J. Am. Chem. Soc.
2005,
127:
15296
23u
Soloshonok VA.
Yamada T.
Ueki H.
Moore AM.
Cook TK.
Arbogast KL.
Soloshonok AV.
Martin CH.
Ohfune Y.
Tetrahedron
2006,
62:
6412
23v
Soloshonok VA.
Ueki H.
J. Am. Chem.
Soc.
2007,
129:
2426
24a
Fishwick CWG.
Sanderson JM.
Findlay JBC.
Tetrahedron
Lett.
1994,
35:
4611
24b
Chen B.-H.
Nie J.-Y.
Singh M.
Pike VW.
Kirk KL.
J.
Fluorine Chem.
1995,
75:
93
24c
Kliukiene R.
Maroziene A.
Stumbreviciute Z.
Karpavicius K.
Chemija
1996,
3:
76
24d
Mosevich IK.
Kuznetsova OF.
Fedorova OS.
Korsakov MV.
Radiochemistry
(Moscow)
1996,
38:
511
24e
Jirman J.
Nadvornik M.
Sopkova J.
Popkov A.
Magn. Reson. Chem.
1998,
36:
351
24f
Collet S.
Bauchat P.
Danion-Bougot R.
Danion D.
Tetrahedron: Asymmetry
1998,
9:
2121
24g
Popkov A.
Jirman J.
Nadvornik M.
Manorik PA.
Collect. Czech. Chem.
Commun.
1998,
63:
990
24h
Popkov AN.
Nadvornik M.
Iirman I.
Sopkova Ya.
Manorik PA.
Fedorenko MA.
Russ.
J. Gen. Chem.
1998,
68:
1242
24i
Mosevich IK.
Kuznetsova OF.
Vasil’ev DA.
Anichkov AA.
Korsakov MV.
Radiochemistry (Moscow)
1999,
41:
273
24j
Collet S.
Carreaux F.
Boucher J.-L.
Pethe S.
Lepoivre M.
Danion-Bougot R.
Danion D.
J.
Chem. Soc., Perkin Trans. 1
2000,
177
24k
Debache A.
Collet S.
Bauchat P.
Danion D.
Euzenat L.
Hercouet A.
Carboni B.
Tetrahedron:
Asymmetry
2001,
12:
761
24l
Nadvornik M.
Popkov A.
Green Chem.
2002,
4:
71
24m
Gu X.
Tang X.
Cowell S.
Ying J.
Hruby VJ.
Tetrahedron
Lett.
2002,
43:
6669
24n
Hashimoto M.
Hatanaka Y.
Sadakane Y.
Nabeta K.
Bioorg. Med. Chem. Lett.
2002,
12:
2507
24o
Zhang J.
Xiong C.
Ying J.
Wang W.
Hruby VJ.
Org.
Lett.
2003,
5:
3115
24p
Chaykovski MM.
Bae LC.
Cheng M.-C.
Murray JH.
Tortolani KE.
Zhang R.
Seshadri K.
Findlay JHBC.
Hsieh S.-Y.
Kalverda AP.
Homans SW.
Brown JM.
J. Am. Chem. Soc.
2003,
125:
15767
24q
Gu X.
Ndungu JM.
Qiu W.
Ying J.
Carducci MD.
Wooden H.
Hruby VJ.
Tetrahedron
2004,
60:
8233
24r
Hao B.
Zhao G.
Kang PT.
Soares JA.
Ferguson TK.
Gallucci J.
Krzycki JA.
Chan MK.
Chem.
Biol.
2004,
11:
1317
24s
Ouchi H.
Kumagai M.
Sakurada S.
Takahata H.
Heterocycles
2004,
64:
505
24t
Ghalit N.
Poot AJ.
Fuerstner A.
Rijkers DTS.
Liskamp RMJ.
Org. Lett.
2005,
7:
2961
24u
Pessoa JC.
Correia I.
Galvao A.
Gameiro A.
Felix V.
Fiuza E.
Dalton Trans.
2005,
2312
24v
Vadon-Legoff S.
Dijols S.
Mansuy D.
Boucher J.-L.
Org. Process Res. Dev.
2005,
9:
677
24w
Popkov A.
Cisarova I.
Sopkova J.
Jirman J.
Lycka A.
Kochetkov KA.
Collect. Czech. Chem. Commun
2005,
70:
1397
24x
Saghiyan AS.
Dadayan SA.
Petrosyan SG.
Manasyan LL.
Geolchanyan AV.
Djamgaryan SM.
Andreasyan SA.
Maleev VI.
Khrustalev VN.
Tetrahedron: Asymmetry
2006,
17:
455
24y
Saghiyan AS.
Geolchanyan AV.
Synth.
Commun.
2006,
36:
3667
24z
Langer V.
Popkov A.
Nadvornik M.
Lycka A.
Polyhedron
2007,
26:
911
25 As shown previously (see refs. 21-23),
CD and ORD spectra of Ni(II) complexes of this type in neutral solutions
exhibit two maxima in the region of metal d-d transition (Cotton effects
at 450 and 550 nm). In the ORD spectra, the sign of Cotton effects
in this region strictly depends upon a conformation of the polycyclic
system of chelate rings. Thus, in the case of complexes containing α-monosub-stituted α-amino
acid, the pseudoaxial orientation of the amino acid side chain,
corresponding to α-l configuration
of α-amino acid, causes a Cotton effect with a positive
sign at the 500-700 nm region and negative sign at 400-450
nm. Consequently, a pseudoequatorial orientation of the amino acid
side chain brings about opposite signs of the Cotton effects at
400-450 (positive) and at the 500-700 nm (negative)
regions. As established in numerous studies, this general trend
is not influenced by the structure and nature of the α-amino
acid side chain, and the configuration of stereogenic centers within
it.
26 For the complex containing (2S ,3R )-3-phenylglutamic
acid, the α-proton appears at δ = 4.14
(J
α
H,
β
H = 3.7
Hz); for the complex containing (2S ,3S )-3-phenylglutamic acid, the α-proton
is at δ = 4.07 (J
α
H,
β
H = 7.0
Hz); for details, see: Belokon’ YuN.
Bulychev AG.
Ryzhov MG.
Vitt SV.
Batsanov AS.
Struchkov YuT.
Bakhmutov VI.
Belikov VM.
J. Chem. Soc., Perkin Trans. 1
1986,
1865
27
Dharanipragada R.
VanHulle K.
Bannister A.
Bear S.
Kennedy L.
Hruby VJ.
Tetrahedron
1992,
48:
4733
28a
Soloshonok VA.
Cai C.
Hruby VJ.
Tetrahedron: Asymmetry
1999,
10:
4265
28b
Soloshonok VA.
Cai C.
Hruby VJ.
Tetrahedron Lett.
2000,
41:
135
28c
Soloshonok VA.
Cai C.
Hruby VJ.
Org. Lett.
2000,
2:
747
28d
Soloshonok VA.
Cai C.
Hruby VJ.
Angew. Chem. Int. Ed.
2000,
39:
2172
28e
Soloshonok VA.
Cai C.
Hruby VJ.
Meervelt LV.
Yamazaki T.
J. Org. Chem.
2000,
65:
6688
28f
Soloshonok VA.
Cai C.
Hruby VJ.
Tetrahedron Lett.
2000,
41:
9645
28g
Cai C.
Soloshonok VA.
Hruby VJ.
J. Org. Chem.
2001,
66:
1339
28h
Soloshonok VA.
Ueki H.
Tiwari R.
Cai C.
Hruby VJ.
J.
Org. Chem.
2004,
69:
4984
28i
Cai C.
Yamada T.
Tiwari R.
Hruby VJ.
Soloshonok VA.
Tetrahedron Lett.
2004,
45:
6855
28j
Soloshonok VA.
Ueki H.
Ellis TK.
Tetrahedron Lett.
2005,
46:
941
28k
Soloshonok VA.
Ueki H.
Ellis TK.
Yamada T.
Ohfune Y.
Tetrahedron Lett.
2005,
46:
1107
28l
Soloshonok VA.
Ellis TK.
Synlett
2006,
533
28m
Ellis TK.
Ueki H.
Yamada T.
Ohfune Y.
Soloshonok VA.
J.
Org. Chem.
2006,
71:
8572