Subscribe to RSS
DOI: 10.1055/s-2008-1067220
Diastereo- and Enantioselective Reductive Aldol Addition of Vinyl Ketones via Catalytic Hydrogenation
Publication History
Publication Date:
06 August 2008 (online)
Abstract
An overview of studies on hydrogenative reductive aldol addition is presented. By simply hydrogenating enones in the presence of aldehydes at ambient temperature and pressure, aldol adducts are generated under neutral conditions in the absence of any stoichiometric byproducts. Using cationic rhodium complexes modified by tri(2-furyl)phosphine, highly syn-diastereoselective reductive aldol additions of vinyl ketones are achieved. Finally, using novel monodentate TADDOL-like phosphonite ligands, the first highly diastereo- and enantioselective reductive aldol couplings of vinyl ketones were devised. These studies, along with other works from our laboratory, demonstrate that organometallics arising transiently in the course of catalytic hydrogenation offer byproduct-free alternatives to preformed organometallic reagents employed in classical carbonyl addition processes.
1 Introduction
2 Intramolecular Hydrogenative Aldol Addition
3 Intermolecular Hydrogenative Aldol Addition
4 Conclusion and Outlook
Key words
hydrogenation - rhodium - green chemistry - aldol - enantioselective catalysis
- Though largely attributed to Wurtz, the aldol reaction was reported first by Borodin:
-
1a
von Richter V. Ber. Dtsch. Chem. Ges. 1869, 2: 552 ; (Borodin’s earliest results are cited in this article) -
1b
Wurtz A. Bull. Soc. Chim. Fr. 1872, 17: 436 -
1c
Borodin A. Ber. Dtsch. Chem. Ges. 1873, 6: 982 -
1d See also:
Kane R. Ann. Phys. Chem., Ser. 2 1838, 44: 475 - For selected reviews on stereoselective aldol additions, see:
-
2a
Heathcock CH. Science 1981, 214: 395 -
Heathcock CH. In Asymmetric Reactions and Processes in Chemistry, ACS Symposium Series Vol. 185:Eliel EL.Otsuka S. American Chemical Society; Washington DC: 1982. p.55 -
2c
Evans DA.Nelson JV.Taber TR. Top. Stereochem. 1982, 13: 1 -
2d
Machajewski TD.Wong C.-H. Angew. Chem. Int. Ed. 2000, 39: 1352 -
2e
Palomo C.Oiarbide M.García JM. Chem. Soc. Rev. 2004, 33: 65 - For reviews, see:
-
3a
Trost BM. Science 1991, 254: 1471 -
3b
Trost BM. Angew. Chem., Int. Ed. Engl. 1995, 34: 259 -
4a
Wender PA.Miller BL. Org. Synth. Theor. Appl. 1993, 2: 27 -
4b
Wender PA.Handy S.Wright DL. Chem. Ind. 1997, 767 - 5For recent reviews on the use of organic catalysts for direct enantioselective aldol addition, see:
- 5
Shibasaki M.Matsunaga S.Kumagai N. In Modern Aldol Reactions Vol. 2:Mahrwald R. Wiley-VCH; Weinheim: 2004. p.197 - For a recent review on the use of metallic catalysts for direct enantioselective aldol additions, see:
-
6a
List B. In Modern Aldol Reactions Vol. 1:Mahrwald R. Wiley-VCH; Weinheim: 2004. p.161 -
6b
Notz W.Tanaka F.Barbas CF. Acc. Chem. Res. 2004, 37: 580 -
7a
Notz W.List B. J. Am. Chem. Soc. 2000, 122: 7386 -
7b
Yoshikawa N.Kumagai N.Matsunaga S.Moll G.Ohshima T.Suzuki T.Shibasaki M. J. Am. Chem. Soc. 2001, 123: 2466 -
7c
Trost BM.Ito H.Silcoff ER. J. Am. Chem. Soc. 2001, 123: 3367 - 8
Sakthivel K.Notz W.Bui T.Barbas CF. J. Am. Chem. Soc. 2001, 123: 5260 -
9a Using
amides of l-proline, direct catalyzed aldol coupling
of 2-butanone to p-nitrobenzaldehyde
affords mixtures of regioisomeric products:
Tang Z.Yang Z.-H.Chen X.-H.Cun L.-F.Mi A.-Q.Jiang Y.-Z.Gong L.-Z. J. Am. Chem. Soc. 2005, 127: 9285 -
9b Higher levels of branched
regioselectivity are obtained using organo-catalysts derived from
diaminocyclohexane:
Luo S.Lu H.Li J.Zhang L.Cheng J.-P. J. Am. Chem. Soc. 2007, 129: 3074 - 10
Yoshikawa N.Yamada YMA.Das J.Sasai H.Shibasaki M. J. Am. Chem. Soc. 1999, 121: 4168 -
11a
House HO.Czuba LJ.Gall M.Olmstead HD. J. Org. Chem. 1969, 34: 2324 -
11b
Kraft ME.Holton RA. Tetrahedron Lett. 1983, 24: 1345 - 12 For a review, see:
Velluz L.Valls J.Nomine G. Angew. Chem. Int. Ed. 1965, 4: 181 -
13a
Corey EJ.Sneen RA. J. Am. Chem. Soc. 1955, 77: 2505 -
13b
Berkoz B.Chavez EP.Djerassi C. J. Chem. Soc. 1962, 1323 -
13c
Mazur Y.Sondheimer F. J. Am. Chem. Soc. 1958, 80: 6296 -
14a
Stork G.Rosen P.Goldman NL. J. Am. Chem. Soc. 1961, 83: 2965 -
14b
Stork G.Rosen P.Goldman N.Coombs RV.Tsuji J. J. Am. Chem. Soc. 1965, 87: 275 - For recent reviews on the reductive aldol reaction, see:
-
Huddleston RR.Krische MJ. Synlett 2003, 12 -
15b
Nishiyama H.Shiomi T. Top. Curr. Chem. 2007, 279: 105 -
15c
Garner S.Han SB.Krische MJ. In Modern ReductionsAndersson P.Munslow I. Wiley-VCH; Weinheim: 2008. p.387-408 - For rhodium-catalyzed reductive aldol reactions mediated by silane, see:
-
16a
Revis A.Hilty TK. Tetrahedron Lett. 1987, 28: 4809 -
Matsuda I.Takahashi K.Sato S. Tetrahedron Lett. 1990, 31: 5331 -
16c
Taylor SJ.Morken JP. J. Am. Chem. Soc. 1999, 121: 12202 -
16d
Taylor SJ.Duffey MO.Morken JP. J. Am. Chem. Soc. 2000, 122: 4528 -
16e
Zhao C.-X.Bass J.Morken JP. Org. Lett. 2001, 3: 2839 -
16f
Emiabata-Smith D.McKillop A.Mills C.Motherwell WB.Whitehead AJ. Synlett 2001, 1302 -
16g
Freiría M.Whitehead AJ.Tocher DA.Motherwell WB. Tetrahedron 2004, 60: 2673 -
16h
Nishiyama H.Shiomi T.Tsuchiya Y.Matsuda I. J. Am. Chem. Soc. 2005, 127: 6972 -
16i
Willis MC.Woodward RL. J. Am. Chem. Soc. 2005, 127: 18012 -
16j
Fuller NO.Morken JP. Synlett 2005, 1459 -
16k
Ito JI.Shiomi T.Nishiyama H. Adv. Synth. Catal. 2006, 348: 1235 -
16l
Shiomi T.Ito J.-I.Yamamoto Y.Nishiyama H. Eur. J. Org. Chem. 2006, 5594 -
16m
Shiomi T.Nishiyama H. Org. Lett. 2007, 9: 1651 - For rhodium-catalyzed reductive aldol reactions mediated by hydrogen, see:
-
17a
Jang HY.Huddleston RR.Krische MJ. J. Am. Chem. Soc. 2002, 124: 15156 -
17b
Huddleston RR.Krische MJ. Org. Lett. 2003, 5: 1143 -
17c
Koech PK.Krische MJ. Org. Lett. 2004, 6: 691 -
17d
Marriner GA.Garner SA.Jang HY.Krische MJ. J. Org. Chem. 2004, 69: 1380 -
17e
Jung CK.Garner SA.Krische MJ. Org. Lett. 2006, 8: 519 -
17f
Han SB.Krische MJ. Org. Lett. 2006, 8: 5657 -
17g
Jung CK.Krische MJ. J. Am. Chem. Soc. 2006, 128: 17051 -
17h
Bee C.Han SB.Hassan A.Iida H.Krische MJ. J. Am. Chem. Soc. 2008, 130: 2747 - For cobalt-catalyzed reductive aldol reactions, see:
-
18a
Isayama S.Mukaiyama T. Chem. Lett. 1989, 2005 -
Baik TG.Luis AL.Wang LC.Krische MJ. J. Am. Chem. Soc. 2001, 123: 5112 -
18c
Wang LC.Jang H.-Y.Roh Y.Lynch V.Schultz AJ.Wang X.Krische MJ. J. Am. Chem. Soc. 2002, 124: 9448 -
18d
Lam HW.Joensuu PM.Murray GJ.Fordyce EAF.Prieto O.Luebbers T. Org. Lett. 2006, 8: 3729 -
18e
Lumby RJR.Joensuu PM.Lam HW. Org. Lett. 2007, 9: 4367 - 19 For iridium-catalyzed reductive
aldol reaction, see:
Zhao CX.Duffey MO.Taylor SJ.Morken JP. Org. Lett. 2001, 3: 1829 - 20 For ruthenium-catalyzed reductive
aldol reaction, see:
Doi T.Fukuyama T.Minamino S.Ryu I. Synlett 2006, 3013 - 21 For palladium-catalyzed reductive
aldol reaction, see:
Kiyooka SI.Shimizu A.Torii S. Tetrahedron Lett. 1998, 39: 5237 - For copper-promoted reductive aldol reaction, see:
-
22a
Chiu P.Chen B.Cheng KF. Tetrahedron Lett. 1998, 39: 9229 -
Chiu P. Synthesis 2004, 2210 - For copper-promoted reductive intramolecular Henry reaction, see:
-
22c
Chung WK.Chiu P. Synlett 2005, 55 - For copper-promoted and -catalyzed reductive cyclizations of α,β-acetylenic ketones tethered to ketones, see:
-
22d
Chiu P.Leung SK. Chem. Commun. 2004, 2308 - For copper-catalyzed reductive aldol reaction, see:
-
23a
Ooi T.Doda K.Sakai D.Maruoka K. Tetrahedron Lett. 1999, 40: 2133 -
23b
Lam HW.Joensuu PMA. Org. Lett. 2005, 7: 4225 -
23c
Lam HW.Murray GJ.Firth JD. Org. Lett. 2005, 7: 5743 -
23d
Deschamp J.Chuzel O.Hannedouche J.Riant O. Angew. Chem. Int. Ed. 2006, 45: 1292 -
23e
Chuzel O.Deschamp J.Chauster C.Riant O. Org. Lett. 2006, 8: 5943 -
23f
Zhao D.Oisaki K.Kanai M.Shibasaki M. Tetrahedron Lett. 2006, 47: 1403 -
23g
Zhao D.Oisaki K.Kanai M.Shibasaki M. J. Am. Chem. Soc. 2006, 128: 14440 -
23h
Welle A.Diez-Gonzalez S.Tinant B.Nolan SP.Riant O. Org. Lett. 2006, 8: 6059 - For nickel-catalyzed reductive aldol reaction, see:
-
24a
Chrovian CC.Montgomery J. Org. Lett. 2007, 9: 537 -
24b
Joensuu PM.Murray G. J.Fardyce EA. F.Luebbers T.Lam HW. J. Am. Chem. Soc. 2008, 130: 7328 - 25 For a reductive aldol coupling employing
stoichiometric quantities of indium reagent, see:
Inoue K.Ishida T.Shibata I.Baba A. Adv. Synth. Catal. 2002, 344: 283 - For indium-catalyzed reductive aldol reaction, see:
-
26a
Shibata I.Kato H.Ishida T.Yasuda M.Baba A. Angew. Chem. Int. Ed. 2004, 43: 711 -
26b
Miura K.Yamada Y.Tomita M.Hosomi A. Synlett 2004, 1985 - 27
Roelen O. inventors; German Patent DE 849548. (Chemische Verwertungsgesellschaft mbH, Oberhausen) ; Chem. Abstr. 1944, 38, 5501 -
28a
Fischer F.Tropsch H. Brennst.-Chem. 1923, 4: 276 -
Fischer F.Tropsch H. Chem. Ber. 1923, 56: 2428 -
29a
Molander GA.Hoberg JO. J. Am. Chem. Soc. 1992, 114: 3123 -
29b
Kokube K.Miura M.Nomura M. Organometallics 1995, 14: 4521 - Side products of reductive carbon-carbon bond formation have been observed in catalytic hydrogenation on rare occasion:
-
Moyes RB.Walker DW.Wells PB.Whan DA.Irvine EA. In Catalysis and Surface Characterization (Special Publication) Vol. 114:Dines TJ.Rochester CH.Thomson J. Royal Society of Chemistry; London: 1992. p.207 -
30b
Bianchini C.Meli A.Peruzzini M.Vizzi F.Zanobini F.Frediani P. Organometallics 1989, 8: 2080 - For recent reviews on hydrogen-mediated C-C coupling, see:
-
31a
Ngai M.-Y.Krische MJ. Chim. Oggi/Chemistry Today 2006, 24(4): 12 ; (chiral technologies supplement) -
Iida H.Krische MJ. Top. Curr. Chem. 2007, 279: 77 -
31c
Ngai M.-Y.Kong J.-R.Krische MJ. J. Org. Chem. 2007, 72: 1063 -
31d
Skucas E.Ngai M.-Y.Komanduri V.Krische MJ. Acc. Chem. Res. 2007, 40: 1394 - 32
Zimmerman HE.Traxler MD. J. Am. Chem. Soc. 1957, 79: 1920 - Monohydride catalytic cycles initiated via deprotonation of cationic rhodium dihydrides have been postulated:
-
33a
Schrock RR.Osborn JA. J. Am. Chem. Soc. 1976, 98: 2134 -
33b
Schrock RR.Osborn JA. J. Am. Chem. Soc. 1976, 98: 2143 -
33c
Schrock RR.Osborn JA. J. Am. Chem. Soc. 1976, 98: 4450 - For reviews on the heterolytic activation of elemental hydrogen, see:
-
34a
Brothers PJ. Prog. Inorg. Chem. 1981, 28: 1 - See also:
-
34b Jeske G., Lauke H.,
Mauermann H., Schumann H., Marks T. J.; J. Am. Chem. Soc.; 1985, 107: 8111
- 35 For a review of the acidity of
metal hydrides, see:
Kristjansdottir SS.Norton JR. In Transition Metal HydridesDedieu A. VCH; Weinheim: 1992. p.309 - 36
Yachi K.Shinokubo H.Oshima K. J. Am. Chem. Soc. 1999, 121: 9465 - 37
Arnett EM.Fisher FJ.Nichols MA.Ribeiro AA. J. Am. Chem. Soc. 1989, 111: 748 - The failure of tris(dialkylamino)sulfonium enolates to react with aldehydes is attributed to unfavorable enolate-aldolate equilibria:
-
38a
Noyori R.Sakata J.Nishizawa M. J. Am. Chem. Soc. 1980, 102: 1223 -
38b
Noyori R.Nishida I.Sakata J. J. Am. Chem. Soc. 1981, 103: 2106 -
38c
Noyori R.Nishida I.Sakata J. J. Am. Chem. Soc. 1983, 105: 1598 - For tri(2-furyl)phosphine and triphenylarsine effects in metal-catalyzed reactions, see:
-
39a
Farina V.Krishnan B. J. Am. Chem. Soc. 1991, 113: 9585 -
39b
Farina V. Pure Appl. Chem. 1996, 68: 73 -
39c
Anderson NG.Keay BA. Chem. Rev. 2001, 101: 997 - For TADDOL-derived phosphonites, see:
-
41a
Seebach D.Hayakawa M.Sakaki J.-I.Schweizer WB. Tetrahedron 1993, 49: 1711 -
41b
Sakaki J.-I.Schweizer WB.Seebach D. Helv. Chim. Acta 1993, 76: 2654 -
41c
Haag D.Runsink J.Scharf H.-D. Organometallics 1998, 17: 398 - For recent examples of hydrogenative C-C couplings developed in our laboratory, see:
-
42a
Kong J.-R.Ngai M.-Y.Krische MJ. J. Am. Chem. Soc. 2006, 128: 718 -
42b
Skucas E.Kong J.-R.Krische MJ. J. Am. Chem. Soc. 2007, 129: 7242 -
42c
Barchuk A.Ngai M.-Y.Krische MJ. J. Am. Chem. Soc. 2007, 129: 8432 -
42d
Barchuk A.Ngai M.-Y.Krische MJ. J. Am. Chem. Soc. 2007, 129: 12644 -
42e
Skucas E.Bower JF.Krische MJ. J. Am. Chem. Soc. 2007, 129: 12678 - For recent examples of transfer hydrogenative C-C couplings developed in our laboratory, see:
-
43a
Bower JF.Skucas E.Patman RL.Krische MJ. J. Am. Chem. Soc. 2007, 129: 15134 -
43b
Bower JF.Patman RL.Krische MJ. Org. Lett. 2008, 10: 1033 -
43c
Shibahara F.Bower JF.Krische MJ. J. Am. Chem. Soc. 2008, 130: 6338 -
43d
Kim IS.Ngai M.-Y.Krische MJ. J. Am. Chem. Soc. 2008, 130: 6340
References
Consistent with internal hydride delivery to the enone s-cis conformer through a six-centered transition structure, enones constrained in the s-trans configuration, such as cyclohexenone, do not participate in hydrogenative reductive aldol coupling.