Subscribe to RSS
DOI: 10.1055/s-2008-1067242
Comprehensive Experimental and Theoretical Studies of Configurationally Labile Epimeric Diamine Complexes of α-Lithiated Benzyl Carbamates
Publication History
Publication Date:
22 August 2008 (online)

Abstract
Different primary benzyl-type carbamates were deprotonated by sec-butyllithium in the presence of a tert-leucinol-derived bis(oxazoline) ligand. The resulting configurationally labile epimeric complexes equilibrated and one diastereomer was strongly favored in the equilibria. After dynamic thermodynamic resolution, the complexes could be trapped with different classes of electrophiles to yield highly enantioenriched secondary benzyl carbamates. The stereochemical course of the substitution reactions was elucidated. High-level quantum chemical investigations were performed and allowed a prediction of both the favored complex and the enantiomeric excess that could be expected within the reactions.
Key words
asymmetric synthesis - carbanions - lithium - bis(oxazoline) ligands - quantum chemical calculations
- Reviews:
-
1a
Hoppe D.Hense T. Angew. Chem., Int. Ed. Engl. 1997, 36: 2282 ; Angew. Chem. 1997, 109, 2376 -
1b
Hoppe D.Marr F.Brüggemann M. Top. Organomet. Chem. 2003, 5: 61 -
1c
Beak P.Johnson T.Kim D.Kim S. Top. Organomet. Chem. 2003, 5: 139 -
1d
Toru T.Nakamura S. Top. Organomet. Chem. 2003, 5: 177 -
1e
Hoppe D.Christoph G. The Chemistry of Organolithium CompoundsRappoport Z.Marek I. Wiley-VCH; Chichester: 2004. p.1058 - In case of configurationally stable lithiated intermediates, catalytic asymmetric reactions are possible:
-
2a
McGrath MJ.O’Brien P. Synthesis 2006, 2233 -
2b
McGrath MJ.O’Brien P. J. Am. Chem. Soc. 2005, 127: 16378 - Selected early contributions:
-
3a
Still WC.Sreekumar C. J. Am. Chem. Soc. 1980, 102 1201 -
3b
Hoppe D.Krämer T. Angew. Chem., Int. Ed. Engl. 1986, 25: 160 ; Angew. Chem. 1986, 98, 171 -
3c
Hoppe D.Carstens A.Krämer T. Angew. Chem., Int. Ed. Engl. 1990, 29: 1422 ; Angew. Chem. 1990, 102, 1455 -
3d
Carstens A.Hoppe D. Tetrahedron 1994, 50: 6097 -
3e
Hoppe D.Hintze F.Tebben P. Angew. Chem., Int. Ed. Engl. 1990, 29: 1424 ; Angew. Chem. 1990, 102, 1457 -
4a
Kerrick ST.Beak P. J. Am. Chem. Soc. 1991, 113: 9708 -
4b
Gawley RE.Zhang Q. J. Am. Chem. Soc. 1993, 115: 7515 -
4c
Pippel DJ.Weisenburger GA.Wilson SR.Beak P. Angew. Chem. Int. Ed. 1998, 37: 2522 ; Angew. Chem. 1998, 110, 2600 -
4d
Weisenburger GA.Faibish NC.Pippel DJ.Beak P. J. Am. Chem. Soc. 1999, 121: 9522 - 5
Basu A.Beak P. J. Am. Chem. Soc. 1996, 118: 1575 -
6a
Hammerschmidt F.Hanninger A. Chem. Ber. 1995, 128: 1069 -
6b
Hammerschmidt F.Hanninger A.Peric B.Völlenkle H.Werner A. Eur. J. Org. Chem. 1999, 3511 - See as well:
-
7a
Derwing C.Hoppe D. Synthesis 1996, 149 -
7b
Derwing C.Frank H.Hoppe D. Eur. J. Org. Chem. 1999, 3519 -
8a
Hoppe D.Kaiser B.Stratmann O.Fröhlich R. Angew. Chem., Int. Ed. Engl. 1997, 36: 2784 ; Angew. Chem. 1997, 109, 2872 -
8b
Stratmann O.Kaiser B.Fröhlich R.Meyer O.Hoppe D. Chem. Eur. J. 2001, 7: 423 -
9a
Nakamura S.Nakagawa R.Watanabe Y.Toru T. Angew. Chem. Int. Ed. 2000, 39: 353 ; Angew. Chem. 2000, 112, 361 -
9b
Nakamura S.Nakagawa R.Watanabe Y.Toru T. J. Am. Chem. Soc. 2000, 122: 11340 -
9c
Nakamura S.Furutani A.Toru T. Eur. J. Org. Chem. 2002, 1690 -
9d
Nakamura S.Ito Y.Wang L.Toru T. J. Org. Chem. 2004, 69: 1581 - For reviews on different enantiodeterming steps and mechanistic pathways:
-
10a
Beak P.Anderson DR.Curtis MD.Laumer JM.Pippel DJ.Weisenburger GA. Acc. Chem. Res. 2000, 33: 715 -
10b
Basu A.Thayumanavan S. Angew. Chem. Int. Ed. 2002, 41: 716 ; Angew. Chem. 2002, 114, 740 -
10c Especially for dynamic thermodynamic
resolution:
Park YS.Yum EK.Basu A.Beak P. Org. Lett. 2006, 8: 2667 - 11
Zarges W.Marsch M.Harms K.Koch W.Frenking G.Boche G. Chem. Ber. 1991, 124: 543 -
12a
Rein K.Goicoechea-Pappas M.Anklekar TV.Hart GC.Smith GA.Gawley RE. J. Am. Chem. Soc. 1989, 111: 2211 -
12b
Meyers AI.Guiles J.Warmus JS.Gonzales MA. Tetrahedron Lett. 1991, 32: 5505 - A pyramidal carbon atom is not a precondition for the occurrence of chirality in an ion pair as long as the cation is connected to one particular enantiotopic face. For the situation in lithiated benzyl sulfones see:
-
13a
Boche G. Angew. Chem., Int. Ed. Engl. 1989, 28: 277 ; Angew. Chem. 1989, 101, 286 -
13b
Gais H.-J.Hellmann GZ.Lindner HJ. Angew. Chem., Int. Ed. Engl. 1990, 29: 100 ; Angew. Chem. 1990, 102, 96 -
13c
Gais H.-J.Hellmann GZ. J. Am. Chem. Soc. 1992, 114: 4439 -
14a
Cram DJ.Mateos JL.Hauck F.Langmann A.Kopecky KR.Nielsen WD.Allinger J. J. Am. Chem. Soc. 1959, 81: 5774 -
14b
Cram DJ.Kingsbury CA.Rickborn B. J. Am. Chem. Soc. 1961, 83: 3688 -
14c
Nozaki H.Aratani T.Toraya T.Noyori R. Tetrahedron 1971, 27: 905 - 15 For a flattened benzylic carbanionic
center in a crystal structure see:
Boche G.Marsch M.Harbach J.Harms K.Ledig B.Schubert F.Lohr JCW.Ahlbrecht H. Chem. Ber. 1993, 126: 1887 - 16
Paquette LA.Gilday JP.Ra CS. J. Am. Chem. Soc. 1987, 109: 6858 - 17
Brook AG.Pascoe JD. J. Am. Chem. Soc. 1971, 93: 6224 -
18a
Wright A.West R. J. Am. Chem. Soc. 1974, 96: 3214 -
18b
Wright A.West R. J. Am. Chem. Soc. 1974, 96: 3227 -
18c
Linderman RJ.Ghannam A. J. Am. Chem. Soc. 1990, 112: 2392 - 19 Concerning the stereochemistry of
the benzylic position within [1,4]-reverse-Brook
rearrangements:
Bousbaa J.Ooms F.Krief A. Tetrahedron Lett. 1997, 38: 7625 -
20a
Komine N.Wang L.-F.Tomooka K.Nakai T. Tetrahedron Lett. 1999, 40: 6809 -
20b
Tomooka K.Wang L.-F.Komine N.Nakai T. Tetrahedron Lett. 1999, 40: 6813 -
20c
Tomooka K.Wang L.-F.Okazaki F.Nakai T. Tetrahedron Lett. 2000, 41: 6121 - 21 Chiral bis(oxazoline) ligands have
been used in a variety of asymmetric reactions in order to introduce
chiral information, for a recent review see:
Desimoni G.Faita G.Jørgensen KA. Chem. Rev. 2006, 106: 3561 - 22 Bis(oxazoline) 9d was
prepared according to:
Denmark SE.Nakajima N.Nicaise OJ.-C.Faucher A.-M.Edwards JP. J. Org. Chem. 1995, 60: 4884 -
23a
Hoppe D.Brönneke A. Synthesis 1982, 1045 -
23b
Hintze F.Hoppe D. Synthesis 1992, 1216 -
24a
Hoffmann RW.Lanz J.Metternich R.Tarara G.Hoppe D. Angew. Chem., Int. Ed. Engl. 1987, 26: 1145 ; Angew. Chem., 1987, 99, 1196 -
24b
Hoffmann RW.Rühl T.Harbach J. Liebigs Ann. Chem. 1992, 725 -
25a
Lange H.Huenerbein R.Fröhlich R.Grimme S.Hoppe D. Chem. Asian J. 2008, 3: 78 -
25b
Lange H.Huenerbein R.Fröhlich R.Grimme S.Hoppe D. Chem. Asian J. 2008, 3: 500 - B97-D:
-
27a
Grimme S. J. Comput. Chem. 2004, 25: 1463 -
27b
Grimme S. J. Comput. Chem. 2006, 27: 1787 - TZVPP-basis and TZVP-basis:
-
27c
Schäfer A.Huber C.Ahlrichs R. J. Chem. Phys. 1994, 100: 5829 - SCS-MP2:
-
27d
Grimme S. J. Chem. Phys. 2003, 118: 9095 -
28a
Clemente FR.Houk KN. J. Am. Chem. Soc. 2005, 127: 11294 -
28b
Gordillo R.Houk KN. J. Am. Chem. Soc. 2006, 128: 3543 - 29 For a first extension of the methodology
employing primary S-benzyl thiocarbamates,
see:
Lange H.Bergander R.Fröhlich R.Kehr S.Nakamura S.Shibata N.Toru T.Hoppe D. Chem. Asian J. 2008, 3: 88 - 30
Yanagisawa A.Nakashima H.Nakatsuka Y.Ishiba A.Yamamoto H. Bull. Chem. Soc. Jpn. 2001, 74: 1129 - For examples for the addition of carboxylic acid chlorides to mesomerically stabilized α-lithiated carbamates under inversion of configuration, see:
-
31a
Ref. 3c and 3d.
-
31b
Zschage O.Schwark J.-R.Hoppe D. Angew. Chem., Int. Ed. Engl. 1990, 29: 296 ; Angew. Chem. 1990, 102, 336 -
31c
Zschage O.Schwark J.-R.Krämer T.Hoppe D. Tetrahedron 1992, 48: 8377 -
31d
Seppi M.Kalkofen R.Reupohl J.Fröhlich R.Hoppe D. Angew. Chem. Int. Ed. 2004, 43: 1423 ; Angew. Chem. 2004, 116, 1447 - Ester (+)-(S)-20d was prepared by asymmetric lithiation of benzyl carbamate 19 in the presence of chiral diamine (-)-sparteine (7) in n-hexane at -78 ˚C (4 M soln). Trapping of the equilibrated and crystallized intermediate epimeric complex (S C)-15˙7 with CO2 at -78 ˚C after 4 h and subsequent esterification of the resulting carboxylic acid (S)-22 with diazomethane yielded 78% of (+)-(S)-20d with 97% ee (HPLC) {[α]D ²0 +107.2 (c 0.92, MeOH)}. Compare:
-
33a
ref. 1a.
-
33b
Retzow S. Diploma Thesis University of Kiel; Germany: 1990. - 34
Yang WK.Cho BT. Tetrahedron: Asymmetry 2000, 11: 2947 - 35
Corey EJ.Schmidt G. Tetrahedron Lett. 1979, 20: 399 - 38
Tomooka K.Shimizu H.Nakai T. J. Organomet. Chem. 2001, 624: 364 ; and references cited therein - Turbomole V5.9:
-
39a
Ahlrichs, R. et al.; University of Karlsruhe: Germany, 2006, see: http://www.turbomole.com.
- ‘grid m4’:
-
39b
Treutler O.Ahlrichs R. J. Chem. Phys. 1995, 102: 346 - RI-approximation:
-
39c
Eichkorn K.Treutler O.Öhm H.Häser M.Ahlrichs R. Chem. Phys. Lett. 1995, 242: 652 -
39d
Eichkorn K.Weigend F.Treutler O.Ahlrichs R. Theor. Chem. Acc. 1997, 97: 119 - RI-MP2:
-
39e
Sierka M.Hogekamp A.Ahlrichs R. J. Chem. Phys. 2003, 118: 9136 -
39f
Weigend F.Häser M. Theor. Chem. Acc. 1997, 97: 331 -
39g
Weigend F.Häser M.Patzelt H.Ahlrichs R. Chem. Phys. Lett. 1998, 294: 143 - 41
Lange H.Fröhlich R.Hoppe D. Tetrahedron 2008, 64: 9123 - 42
Kofron WG.Baclawski LM. J. Org. Chem. 1976, 41: 1879 - 43
de Boer TJ.Backer HJ. Org. Synth. Coll. Vol. IV John Wiley & Sons; London: 1963. p.250 -
44a
Blessing RH. Acta Crystallogr., Sect. A 1995, 51: 33 -
44b
Blessing RH. J. Appl. Cryst. 1997, 30: 421 - 45
Otwinowski Z.Borek D.Majewski W.Minor W. Acta Crystallogr., Sect. A 2003, 59: 228 - 46
Sheldrick GM. Acta Crystallogr., Sect. A 1990, 46: 467 - 47 SHELXL-97:
Sheldrick GM. Acta Crystallogr., Sect. A 2008, 64: 112
References
Within a dynamic thermodynamic resolution: ΔΔG = RT˙ln(e.r.), ΔΔE ≈ ΔΔH(0 K) ≈ ΔΔG = ΔΔH - TΔΔS.
32X-ray crystal structure analysis for (R)-20f: formula C21H24BrNO3, M = 418.32, colorless crystals 0.30 × 0.30 × 0.15 mm, a = 5.774(1), b = 17.816(1), c = 19.291(1) Å, V = 1984.5(4) ų, ρcalcd = 1.400 g cm-³, µ = 29.81 cm-¹, empirical absorption correction (0.468 ≤ T ≤ 0.663), Z = 4, orthorhombic, space group P212121 (No. 19), λ = 1.54178 Å, T = 223 K, ω and ϕ scans, 9441 reflections collected (±h, ±k, ±l), [(sinθ)/λ] = 0.60 Å-¹, 3384 independent (R int = 0.034) and 3338 observed reflections [I ≤ 2 σ(I)], 239 refined parameters, R = 0.028, R w ² = 0.074, Flack parameter -0.021(15), max. residual electron density 0.28 (-0.24) e Å-³, hydrogen atoms calculated and refined as riding atoms, CCDC 684786.
36All the bis(oxazoline) 9d containing complexes calculated show values for this sum of angles between 314˚ [(R C)-33˙9d] and 316˚ [(R C)-32˙9d] for the favored R C-configured epimers and values around 312˚ to 313˚ for the unfavored S C-configured epimers.
37X-ray crystal structure analysis for (S,S)-29: formula C21H29NO2Si, M = 355.54, colorless crystals 0.25 × 0.06 × 0.05 mm, a = 22.666(1), b = 7.897(1), c = 12.669(1) Å, β = 108.45(1)˚, V = 2151.1(3) ų, ρcalcd = 1.0981 g cm-³, µ = 10.52 cm-¹, empirical absorption correction (0.779 ≤ T ≤ 0.949), Z = 4, monoclinic, space group C2 (No. 5), λ = 1.54178 Å, T = 223 K, ω and ϕ scans, 5904 reflections collected (±h, ±k, ±l), [(sinθ)/λ] = 0.59 Å-¹, 2448 independent (R int = 0.048) and 1962 observed reflections [I ≤ 2 σ(I)], 254 refined parameters, R = 0.052, R w ² = 0.122, Flack parameter 0.02 (6), max. residual electron density 0.17 (-0.23) e Å-³, hydrogen atoms calculated and refined as riding atoms, CCDC 684785.
40Tables containing the atom coordinates of the different complexes can be obtained from the author upon request.
48SCHAKAL: Keller, E. University of Freiburg, Germany, 1997
49These data can be obtained free of charge from The Cambridge Crystallographic Data Centre via http://www.ccdc.cam.ac.uk/data request/cif.