Dtsch Med Wochenschr 2008; 133(13): 624-628
DOI: 10.1055/s-2008-1067294
Originalarbeit | Original article
Kardiologie, Radiologie
© Georg Thieme Verlag KG Stuttgart · New York

Sicherheit von Herzschrittmachern und implantierbaren Kardioverter-Defibrillatoren im Magnetresonanztomographen

Beurteilung der Aggregatfunktion bei 1,5 TeslaSafety of cardiac pacemakers and ICDs in magnetic resonance imagingP. Nordbeck1 , W. R. Bauer1
  • 1Medizinische Klinik und Poliklinik I, Universität Würzburg
Weitere Informationen

Publikationsverlauf

eingereicht: 22.1.2008

akzeptiert: 6.3.2008

Publikationsdatum:
19. März 2008 (online)

Zusammenfassung

Hintergrund und Fragestellung: Die Magnetresonanztomographie (MRT) findet im klinischen Alltag zunehmend Verbreitung, ist aber für Träger von Herzschrittmachern und implantierbaren Kardioverter-Defibrillatoren (ICDs) kontraindiziert. In dieser Studie wurde näher untersucht, unter welchen Umständen im MRT potentiell lebensbedrohliche Arrhythmien ausgelöst werden können und ob diesem Problem durch Programmierung des Aggregats begegnet werden kann.

Methodik: Acht Schrittmacher und sieben ICDs wurden mit verschiedenen Programmierungen im Phantom bei 1,5 Tesla (Experimental- und Bildgebungs-Sequenzen) getestet.

Ergebnisse: Bei vier Schrittmachern kam es zum Abfall der Batteriespannung (Austauschindikation), bei drei davon zusätzlich zu Änderungen in der Programmierung (Reset). Bei den getesteten ICDs traten solche Veränderungen nicht auf, jedoch wurden abhängig von den verwendeten Pulssequenzen bei allen Modellen tachykarde Episoden während der MRT angezeigt.

Folgerung: Die elektromagnetischen Felder im MRT sind bereits unter klinischen Routinebedingungen in der Lage, schwere Funktionsstörungen bei Herzschrittmachern zu verursachen. Bestimmte Aggregat-Programmierungen sind nur bedingt geeignet, die Patienten-Sicherheit im MRT zu erhöhen, da stets mit Verlust beziehungsweise unvorhersehbaren Änderungen der Programmierung gerechnet werden muss.

Summary

Background and objective: Magnetic resonance imaging (MRI) is increasingly used in patients, but it is contraindicated in those with cardiac pacemakers (CP) or implantable cardioverter defibrillators (ICD). This study examined circumstances in which potentially life-threatening arrhythmias may be triggered in patients with CP undergoing MRI and whether these problems can be avoided by reprogramming of these devices.

Methods: Eight CP and seven ICDs were investigated in a phantom at 1.5 tesla (experimental and imaging sequences).

Results: A decrease in battery voltage was found in four CP after MRI (indication for elective replacement). Additionally, three showed changes in programming (resets). Analogous changes did not appear in the tested ICDs, but periods of tachycardia were recorded in all types of devices during MRI depending on the pulse sequence employed.

Conclusion: MRI-related electromagnetic fields as used in routine MRI can induce severe pacemaker device malfunctions. Device programming approaches are unreliable for prevention of patient hazards, as programming changes or resets are one of the primary malfunctions during MRI.

Literatur

  • 1 Achenbach S, Moshage W, Diem B, Bieberle T, Schibgilla V, Bachmann K. Effects of magnetic resonance imaging on cardiac pacemakers and electrodes.  Am Heart J. 1997;  134 (3) 467-73
  • 2 American Society for Testing and Materials (ASTM) .Standard test method for measurement of radio frequency induced heating near passive implants during magnetic resonance imaging (F2182 - 02a). ASTM International West Conshohocken, PA 2004
  • 3 Anfinsen O G, Berntsen R F, Aass H, Kongsgaard E, Amlie J P. Implantable cardioverter defibrillator dysfunction during and after magnetic resonance imaging.  Pacing Clin Electrophysiol. 2002;  25 1400-2
  • 4 Faris O P, Shein M. Food and Drug Administration perspective: Magnetic resonance imaging of pacemaker and implantable cardioverter-defibrillator patients.  Circulation. 2006;  114 (12) 1232-3
  • 5 Ferris N J, Kavnoudias H, Thiel C, Stuckey S. The 2005 Australian MRI safety survey.  AJR Am J Roentgenol. 2007;  188 (5) 1388-94
  • 6 Fidler F, Nordbeck P, Warmuth M, Ehses P, Hiller K H, Weiss I, Maxfield M, Jakob P M, Bauer W R. MR-Safety: Investigation on a worst case implant heating protocol - a simple solution for radio frequency induced heating sequences. 18th International Conference of the Society for Medical Innovation and Technology SMIT. 11-14 May 2006
  • 7 Food and Drug Administration, Medical device reporting, Monterey. http://www.fda.gov/cdrh/mdr/
  • 8 Gimbel J R, Kanal E, Schwartz K M, Wilkoff B L. Outcome of magnetic resonance imaging (MRI) in selected patients with implantable cardioverter defibrillators (ICDs).  Pacing Clin Electrophysiol. 2005;  28 (4) 270-3
  • 9 Gimbel J R, Wilkoff B L, Kanal E, Rozner M A. Safe, sensible, sagacious: responsible scanning of pacemaker patients.  Eur Heart J. 2005;  26 (16) 1683-4
  • 10 Gimbel J R, Bailey S M, Tchou P J, Ruggieri P M, Wilkoff B L. Strategies for the safe magnetic resonance imaging of pacemaker-dependent patients.  Pacing Clin Electrophysiol. 2005;  28 (10) 1041-6
  • 11 Irnich W, Irnich B, Bartsch C, Stertmann W A, Gufler H, Weiler G. Do we need pacemakers resistant to magnetic resonance imaging?.  Europace. 2005;  7 (4) 353-65
  • 12 Levine G N, Gomes A S, Arai A E, Bluemke D A, Flamm S D, Kanal E, Manning W J, Martin E T, Smith J M, Wilke N, Shellock F S. American Heart Association Committee on Diagnostic and Interventional Cardiac Catheterization; American Heart Association Council on Clinical Cardiology; American Heart Association Council on Cardiovascular Radiology and Intervention . Safety of magnetic resonance imaging in patients with cardiovascular devices.  Circulation. 2007;  116 ((24)) 2878-91
  • 13 Luechinger R, Duru F, Scheidegger M B, Boesiger P, Candinas R. Force and torque effects of a 1.5-Tesla MRI scanner on cardiac pacemakers and ICDs.  Pacing Clin Electrophysiol. 2001;  ((2)) 24 199-205
  • 14 Luechinger R, Duru F, Zeijlemaker V A, Scheidegger M B, Boesiger P, Candinas R. Pacemaker reed switch behavior in 0.5, 1.5, and 3.0 Tesla magnetic resonance imaging units: are reed switches always closed in strong magnetic fields?.  Pacing Clin Electrophysiol. 2002;  25 ((10)) 1419-23
  • 15 Luechinger R, Zeijlemaker V A, Pedersen E M, Mortensen P, Falk E, Duru F, Candinas R, Boesiger P. In vivo heating of pacemaker leads during magnetic resonance imaging.  Eur Heart J. 2005;  26 (4) 376-83
  • 16 Martin E T, Coman J A, Shellock F G, Pulling C C, Fair R, Jenkins K. Magnetic resonance imaging and cardiac pacemaker safety at 1.5-Tesla.  J Am Coll Cardiol. 2004;  43 ((7)) 1315-24
  • 17 Martin E T. Can cardiac pacemakers and magnetic resonance imaging systems co-exist?.  Eur Heart J. 2005;  26 (4) 325-7
  • 18 Nath S, Lynch 3rd C, Whayne J G, Haines D E. Cellular electrophysiological effects of hyperthermia on isolated guinea pig papillary muscle. Implications for catheter ablation.  Circulation. 1993;  88 ((4 Pt 1)) 1826-31
  • 19 Nazarian S, Roguin A, Zviman M M, Lardo A C, Dickfeld T L, Calkins H, Weiss R G, Berger R D, Bluemke D A, Halperin H R. Clinical utility and safety of a protocol for noncardiac and cardiac magnetic resonance imaging of patients with permanent pacemakers and implantable-cardioverter defibrillators at 1.5 tesla.  Circulation. 2006;  114 ((12)) 1277-84
  • 20 Nordbeck P, Fidler F, Weiss I, Warmuth M, Friedrich M T, Ehses P, Geistert W, Ritter O, Jakob P M, Ladd M E, Quick H H, Bauer W R. Spatial distribution of RF-induced E-fields and implant heating in MRI.  Magn Reson Med. Accepted; 
  • 21 Rezai A R, Finelli D, Nyenhuis J A, Hrdlicka G, Tkach J, Sharan A, Rugieri P, Stypulkowski P H, Shellock F G. Neurostimulation systems for deep brain stimulation: in vitro evaluation of magnetic resonance imaging-related heating at 1.5 tesla.  J Magn Reson Imaging. 2002;  15 ((3)) 241-50
  • 22 Roguin A, Zviman M M, Meininger G R, Rodrigues E R, Dickfeld T M, Bluemke D A, Lardo A, Berger R D, Calkins H, Halperin H R. Modern pacemaker and implantable cardioverter/defibrillator systems can be magnetic resonance imaging safe: in vitro and in vivo assessment of safety and function at 1.5 T.  Circulation. 2004;  110 ((5)) 475-82
  • 23 Shellock F G, Fieno D S, Thomson L J, Talavage T M, Berman D S. Cardiac pacemaker: in vitro assessment at 1.5 T.  Am Heart J. 2006;  151 ((2)) 436-43
  • 24 Sommer T, Vahlhaus C, Lauck G, von Smekal A, Reinke M, Hofer U, Block W, Träber F, Schneider C, Gieseke J, Jung W, Schild H. MR imaging and cardiac pacemakers: in-vitro evaluation and in-vivo studies in 51 patients at 0.5 T.  Radiology. 2000;  215 869-79
  • 25 Sommer T, Naehle C P, Yang A, Zeijlemaker V, Hackenbroch M, Schmiedel A, Meyer C, Strach K, Skowasch D, Vahlhaus C, Litt H, Schild H :. Strategy for safe performance of extrathoracic magnetic resonance imaging at 1.5 tesla in the presence of cardiac pacemakers in non-pacemaker-dependent patients: a prospective study with 115 examinations.  Circulation. 2006;  114 ((12)) 1285-92
  • 26 Vahlhaus C, Sommer T, Lewalter T, Schimpf R, Schumacher B, Jung W, Lüderitz B. Interference with cardiac pacemakers by magnetic resonance imaging: are there irreversible changes at 0.5 Tesla?.  Pacing Clin Electrophysiol. 2001;  24 489-95
  • 27 Wollmann C, Grude M, Tombach B, Kugel H, Heindel W, Breithardt G, Böcker D, Vahlhaus C. Safe performance of magnetic resonance imaging on a patient with an ICD.  Pacing Clin Electrophysiol. 2005;  28 339-42

Dr. Peter Nordbeck

Medizinische Klinik und Poliklinik I der Universität Würzburg

Josef-Schneider-Str. 2

97080 Würzburg

Telefon: + 49/931/888-5157

Fax: + 49/931/888-5851

eMail: nordbeck@physik.uni-wuerzburg.de