Subscribe to RSS
DOI: 10.1055/s-2008-1072613
Intramolecular Friedel-Crafts Reaction of Indoles with Carbonyl Groups: A Simple Synthesis of 3- and 4-Substituted β-Carbolin-1-ones
Publication History
Publication Date:
07 May 2008 (online)
Abstract
The intramolecular Friedel-Crafts reaction of indole-2-carboxylic acid β-oxoamides catalyzed by trifluoroacetic acid or InCl3, is a convenient method for the synthesis of 3-aryl-, 4-aryl-, and 4-alkyl-β-carbolin-1-ones.
Key words
heterocycles - indoles - ring closure - Friedel-Crafts reaction - β-carbolinones
-
1a
Jimènez C.Quiñoà E.Adamczeski M.Hunter LM.Crews P. J. Org. Chem. 1991, 56: 3403 -
1b
Larsen LK.Moore RE.Patterson GML. J. Nat. Prod. 1994, 57: 419 -
2a
Veale CA.Damewood JR.Steelman GB.Bryant C.Gomes B.Williams J. J. Med. Chem. 1995, 38: 86 -
2b
Doyle TW.Balitz DM.Grulich RE.Nettleton DE.Gould SJ.Tann C.Moews AE. Tetrahedron Lett. 1981, 22: 4594 -
2c
Wu J.-P.Wang J.Abeywardane A.Andersen D.Emmanuel M.Gautschi E.Goldberg DR.Kashem MA.Lukas S.Mao W.Martin L.Morwick T.Moss N.Pargellis C.Patel UR.Patnaude L.Peet GW.Skow D.Snow RJ.Ward Y.Werneburg B.White A. Bioorg. Med. Chem. Lett. 2007, 17: 4664 - 3
Wang S.Dong Y.Wang X.Hu X.Liu JO.Hu Y. Org. Biomol. Chem. 2005, 3: 911 - 4
Tahri A.Buysens KJ.Van der Eycken EV.Vandenberghe DM.Hoornaert GJ. Tetrahedron 1998, 54: 13211 -
5a
Katritzky AR.Rees CW. Comprehensive Heterocyclic Chemistry Pergamon Press; Oxford: 1984. -
5b
Sundberg RJ. Indoles Academic Press; London: 1996. - Among the most recent papers:
-
6a
Karthik M.Palanichamy M.Murugesan V. Stud. Surf. Sci. Catal. 2005, 156: 873 -
6b
Kantam ML.Aziz K.Likhar PR. Catal. Lett. 2004, 98: 117 -
6c
Bartoli G.Bosco M.Foglia G.Giuliani A.Marcantoni E.Sambri L. Synthesis 2004, 895 -
6d
Mi XL.Luo SZ.He JQ.Chen JP. Tetrahedron Lett. 2004, 45: 4567 -
6e
Ji SJ.Wang SY.Zhang Y.Loh TP. Tetrahedron 2004, 60: 2051 -
6f
Ji SJ.Zhou MF.Gu DG.Jiang DQ.Loh TP. Eur. J. Org. Chem. 2004, 1584 -
6g
Bandgar BP.Bettigeri SV.Joshi NS. Monatsh. Chem. 2004, 135: 1265 -
6h
Xu-Feng L.Sun-Liang C.Yan-Guang W. Synth. Commun. 2006, 36: 3153 -
7a
Freter K. J. Org. Chem. 1975, 40: 2525 -
7b
Freter K.Fuchs V. J. Heterocycl. Chem. 1982, 19: 377 -
7c
Taylor ET.Nikam SS.Lambert G.Martin AR.Nelson DL. Mol. Pharmacol. 1988, 34: 42 -
7d
Bailey DM.DeGrazia GD.Alexander EJ.Powles RG.Johnson RE.Patrick RA.Heerdt BG.Fairbain ME.Pruben DJ. J. Med. Chem. 1985, 28: 160 -
7e
Chakrabarty M.Kundu T.Harigaya Y. J. Chem. Res. 2004, 778 - 8
Bandini M.Melloni A.Tommasi S.Umani-Ronchi A. Synlett 2005, 1199 ; and references quoted therein - 9
Angeli M.Bandini M.Garelli A.Piccinelli F.Tommasi S.Umani-Ronchi A. Org. Biomol. Chem. 2006, 3291 -
10a
Beccalli E.Broggini G. Tetrahedron Lett. 2003, 44: 1919 -
10b
Abbiati G.Beccalli E.Broggini G.Zoni C. J. Org. Chem. 2003, 68: 7625 - 11
Johnson JR.Larsen AA.Holley AD.Gerzon K. J. Am. Chem. Soc. 1947, 69: 2364 - 12
Stetter H.Lappe P. Chem. Ber. 1980, 113: 1890 - 13
More JD.Finney NS. Org. Lett. 2002, 4: 3001 - 14
Lakhdar S.Westermaier M.Terrier F.Goumont R.Boubaker T.Ofial AR.Mayr H. J. Org. Chem. 2006, 71: 9088 - 15
Gallen MJ.Goumont R.Clark T.Terrier F.Williams CM. Angew. Chem. Int. Ed. 2006, 45: 2929 - 16
Harris JM.Padwa A. Org. Lett. 2003, 5: 4195 ; and references quoted therein
References and Notes
General Procedure for the Synthesis of Hydroxyamides 3 and 7: The appropriate amino alcohol 2 (3 mmol) was dissolved in anhyd THF (12 mL) and then EDC (3 mmol), HOBt (3 mmol) and the corresponding indole-2-carboxylic acid (2 mmol) were added sequentially at 25 °C. After stirring overnight at r.t., evaporating the solvent, pouring the product into sat. aq NaHCO3, extracting with EtOAc, washing with 1 N HCl, sat. aq NaHCO3, brine, drying over Na2SO4 and concentrating the combined extract gave the amide.
General Procedure for the Synthesis of Ketoamides 4a,e,g, and 8c: A suspension of the appropriate amide 3 or 7c (0.45 mmol) in EtOAc (6 mL) was added with IBX (1.35 mmol), then immersed in an oil bath set to 80 °C and stirred vigorously open to the atmosphere. After 2.5 h (TLC monitoring) the reaction was cooled to r.t. and filtered through a medium glass frit. The filter cake was washed with EtOAc-CH2Cl2 (50:50, 2 × 6 mL) and the combined filtrates were concentrated to yield the product.
General Procedure for the Synthesis of Ketoamides 4b-d: To a well-stirred suspension of the appropriate amide 3 (2 mmol) in anhyd CH2Cl2 (10 mL) was added PCC (4 mmol) and the mixture was stirred at 40-50 °C, under nitrogen, for 8 h. Silica gel was added, the solvent evaporated and the residue was purified by flash chromatography (CH2Cl2-acetone, 90:10).
General Procedure for the Synthesis of β-Carbolin-1-ones 5 and 9c: Trifluoroacetic acid (0.6 mmol) was added to a suspension of the appropriate ketoamide 4 or 8c (0.4 mmol) in MeCN (6 mL) and the mixture was refluxed for 16 h. Evaporating the solvent, extracting with EtOAc, washing with sat. aq NaHCO3, drying over Na2SO4 and concentrating the extract gave a crude product that was purified by crystallization or by flash chromatography.
General Procedure for the Synthesis of β-Carbolin-1-ones 9a,b,d: To a solution of IBX (1 mmol) in DMSO (1.5 mL) the appropriate hydroxyamide 7 (0.521 mmol) was added and the solution was stirred overnight at r.t. under N2. The solution was diluted with H2O and extracted with EtOAc. The combined organic layers were washed with sat. aq NaHCO3, H2O, dried over Na2SO4 and evaporated. The crude product was crystallized from EtOAc (9a,d) or chromatographed on flash silica gel (CH2Cl2-MeOH, 99:1; 9b).
Deprotection of 5f: To an ice-cooled suspension of 5f (170 mg, 0.399 mmol) in anisole (16 mL), AlCl3 (319 mg, 2.39 mmol) was added and the mixture was stirred for 30 min at 110 °C. Addition of H2O, extraction with EtOAc, washing with NaHCO3, H2O and brine, then drying, filtering and evaporating of solvent, followed by flash chromatography with CH2Cl2-MeOH (94:6) as an eluent, gave 5h (59 mg, 52%); mp 280 °C (MeOH). 1H NMR (300 MHz, DMSO-d
6): d = 11.86 (s, 1 H), 11.31 (s, 1 H), 9.55 (s, 1 H), 7.34 (d, J = 8.6 Hz, 2 H), 6.72-6.94 (m, 5 H), 3.81 (s, 3 H), 3.53 (s, 3 H). 13C NMR (75 MHz, CDCl3): δ = 157.3, 155.1, 150.3, 144.5, 135.1, 130.7, 127.8, 127.2, 123.2, 122.5, 116.8, 115.6, 114.2, 104.2, 94.9, 55.8.
Spectral data for relevant compounds [unless otherwise noted: 1H NMR (300 MHz, DMSO-d
6) and 13C NMR (75 MHz, DMSO-d
6)]
5a: mp 260 °C (dec.). 1H NMR: δ = 11.4 (d, J = 4.5 Hz, 1 H), 7.57-7.40 (m, 5 H), 7.15 (s, 1 H), 6.85 (d, J = 4.5 Hz, 1 H), 6.65 (s, 1 H), 4.27 (s, 3 H), 3.88 (s, 3 H), 3.45 (s, 3 H). 13C NMR: δ = 155.9, 150.5, 144.9, 137.2, 136.3, 129.8 (2 × C), 128.8 (2 × C), 127.9, 125.8, 123.4, 122.7, 116.6, 112.8, 103.8, 93.6, 56.2, 56.05, 31.6.
5b: mp 258 °C. 1H NMR: δ = 11.30 (d, J = 4.8 Hz, 1 H), 9.57 (s, 1 H), 7.30 (d, J = 8.2 Hz, 2 H), 7.12 (s, 1 H), 6.90 (d, J = 8.2 Hz, 2 H), 6.77 (d, J = 4.8 Hz, 1 H), 6.75 (s, 1 H), 4.27 (s, 3 H), 3.87 (s, 3 H), 3.50 (s, 3 H). 13C NMR: δ = 157.2, 155.6, 150.7, 144.7, 136.6, 130.9 (2 × C), 128.3, 125.9, 123.9, 122.6, 116.7, 115.5 (2 × C), 113.0, 104.3, 93.8, 56.2, 55.8, 31.6.
5c: mp 271 °C. 1H NMR: δ = 11.35 (d, J = 5.2 Hz, 1 H), 9.55 (br s, 1 H), 7.30 (t, J = 8.2 Hz, 1 H), 7.16 (s, 1 H), 6.95 (d, J = 5.2 Hz, 1 H), 6.93 (d, J = 1.5 Hz, 1 H), 6.80-6.86 (m, 3 H), 4.45 (s, 3 H), 3.90 (s, 3 H), 3.50 (s, 3 H). 13C NMR: δ = 157.8, 155.9, 150.6, 144.7, 138.3, 136.5, 129.9, 125.8, 123.1, 120.0, 116.8, 116.5, 116.4, 114.8, 112.9, 104.1, 93.5, 56.2, 55.7, 31.7.
5d: mp 252 °C. 1H NMR (300 MHz, acetone-d
6): δ = 7.51 (d, J = 8.9 Hz, 1 H), 7.38 (d, J = 8.6 Hz, 2 H), 7.11 (dd, J = 2.6, 8.9 Hz, 1 H), 7.02 (d, J = 8.6 Hz, 2 H), 6.91 (s, 1 H), 6.86 (d, J = 2.6 Hz, 1 H), 4.35 (s, 3 H), 3.67 (s, 3 H).
5e: mp >300 °C. 1H NMR: δ = 11.04 (d, J = 5.2 Hz, 1 H), 7.46 (s, 1 H), 7.17 (s, 1 H), 6.75 (d, J = 5.2 Hz, 1 H), 4.21 (s, 3 H), 4.18 (s, 3 H), 3.84 (s, 3 H), 2.50 (s, 3 H). 13C NMR: δ = 155.9, 150.7, 145.3, 136.3, 125.5, 125.1, 122.1, 113.9, 110.6, 104.3, 93.5, 56.4, 56.2, 31.5, 16.6.
5f: mp 153 °C. 1H NMR: δ = 11.39 (d, J = 4.5 Hz, 1 H), 9.57 (s, 1 H), 7.13-7.38 (m, 7 H), 6.90 (d, J = 7.4 Hz, 2 H), 6.82 (d, J = 4.5 Hz, 1 H), 6.74 (s, 1 H), 6.10 (s, 1 H), 3.79 (s, 3 H), 3.49 (s, 3 H). 13C NMR: δ = 157.4, 155.7, 150.6, 144.8, 139.2, 135.8, 130.9, 129.9, 128.8, 127.5, 125.3, 124.3, 116.8, 115.3, 114.7, 113.7, 94.0, 56.3.
9a: mp 156 °C. 1H NMR: δ = 7.65-8.12 (m, 5 H), 7.15 (br s, 1 H), 7.05 (s, 1 H), 7.02 (s, 1 H), 7.00 (s, 1 H), 3.95 (s, 3 H), 3.83 (s, 3 H), 3.75 (s, 3 H). 13C NMR: δ = 168.5, 164.3, 148.9, 145.8, 135.1 (2 × C), 134.1, 131.6 (2 × C), 130.9, 129.9, 126.7, 120.8, 118.4, 105.6, 102.9, 93.6, 56.1 (2 × C), 32.0.
9b: mp 201 °C. 1H NMR: δ = 7.55 (s, 1 H), 7.44 (d, J = 7.1 Hz, 1 H), 7.22-7.38 (m, 5 H), 7.15 (s, 1 H), 6.97 (d, J = 7.1 Hz, 1 H), 5.22 (s, 2 H), 4.21 (s, 3 H), 3.91 (s, 3 H), 3.83 (s, 3 H). 13C NMR: δ = 155.6, 151.0, 145.6, 138.7, 136.4, 129.2, 128.9 (2 × C), 128.0 (2 × C), 127.7, 125.7, 124.5, 113.3, 102.9, 100.4, 93.6, 56.3 (2 × C), 50.8, 31.7.
9c: mp 255 °C. 1H NMR (300 MHz, acetone-d
6): δ = 11.0 (br s, 1 H), 10.63 (br s, 1 H), 7.85 (d, J = 8.5 Hz, 2 H), 7.60 (s, 1 H), 7.31-7.54 (m, 3 H), 7.28 (s, 1 H), 7.15 (s, 1 H), 3.88 (s, 6 H).
9d: mp 199 °C, 1H NMR: δ = 8.08 (br s, 1 H), 7.71-7.90 (m, 4 H), 7.64 (d, J = 8.6 Hz, 2 H), 7.37-7.56 (m, 6 H), 7.04-7.29 (m, 4 H), 6.07 (s, 2 H).