Abstract
Sonogashira reaction catalyzed by cobalt hollow nanospheres has been developed. Coupling of alkynes with aryl iodide or aryl bromide in the presence of potassium carbonate, triphenylphosphine, and cuprous iodide provides the corresponding products with moderate to good yields, which reveals obvious advantages such as low-cost catalyst, the recyclability of the catalyst, and simple experimental operation.
Key words
cobalt hollow nanospheres - catalysis - Sonogashira reaction - cross-coupling - alkynes
References and Notes
1a
Sonogashira K.
Tohda Y.
Hagihara N.
Tetrahedron Lett.
1975,
16:
4467
1b
Sonogashira K.
Yatake T.
Tohda Y.
Takahashi S.
Hagihara N.
J. Chem. Soc., Chem. Commun.
1977,
291
1c
Sonogashira K. In Metal-Catalyzed Cross-Coupling Reactions
Stang PJ.
Diederich F.
Wiley-VCH;
Weinheim:
1998.
p.203
1d
Sonogashira K. In Comprehensive Organic Synthesis
Vol. 3:
Trost BM.
Fleming I.
Pergamon Press;
New York:
1991.
p.521
1e
Rafael Chinchilla R.
Nájera C.
Chem. Rev.
2007,
107:
874
1f
Wang YF.
Deng W.
Liu L.
Guo QX.
Chin. J. Org. Chem.
2005,
25:
8
2a
Brandsma L.
Synthesis of Acetylenes, Allenes and Cumulenes: Methods and Techniques
Elsevier;
Oxford:
2004.
p.293
2b
Sonogashira K.
In Metal-Catalyzed Cross-Coupling Reactions
Vol. 1:
Diederich F.
de Meijere A.
Wiley-VCH;
Weinheim:
2004.
p.319
2c
Tykwinski RR.
Angew. Chem. Int. Ed.
2003,
42:
1566
2d
Negishi E.
Anastasia L.
Chem. Rev.
2003,
103:
1979
2e
Díaz-Sanchez BR.
Iglesias-Arteaga MA.
Melgar-Fernandez R.
Juaristi E.
J. Org. Chem.
2007,
72:
4822
2f
Sasabe H.
Inomoto N.
Kihara N.
Suzuki Y.
Ogawa A.
Takata T.
J. Polym. Sci., Part A: Polym. Chem.
2007,
45:
4154
3a
Buchmeiser MR.
Wurst K.
J. Am. Chem. Soc.
1999,
121:
11101
3b
Gil-Moltó J.
Karlstrom S.
Nájera C.
Tetrahedron
2005,
61:
12168
3c
Gronnow MJ.
Luque R.
Macquarrie DJ.
Clark JH.
Green Chem.
2005,
7:
552
3d
Li P.
Wang L.
Adv. Synth. Catal.
2006,
348:
681
4
Arques A.
Aunon D.
Molina P.
Tetrahedron Lett.
2004,
45:
4337
5
Nishide K.
Liang H.
Ito S.
Yoshifuji M.
J. Organomet. Chem.
2005,
690:
4809
6a
Herrmann WA.
Angew. Chem. Int. Ed.
2002,
41:
1290
6b
Peris E.
Crabtree RH.
Coord. Chem. Rev.
2004,
248:
2239
6c
Crudden CM.
Allen DP.
Coord. Chem. Rev.
2004,
248:
2247
6d
Gholap AR.
Venkatesan K.
Pasricha R.
Daniel T.
Lahoti RJ.
Srinivasan KV.
J. Org. Chem.
2005,
70:
4869
6e
Dhudshia B.
Thadani AN.
Chem. Commun.
2006,
668
6f
Kim JH.
Lee DH.
Jun BH.
Lee YS.
Tetrahedron Lett.
2007,
48:
7079
7a
Moreno-Mañas M.
Pleixats R.
Acc. Chem. Res.
2003,
36:
638
7b
Thathagar MB.
ten Elshof JE.
Rothenberg G.
Angew. Chem. Int. Ed.
2006,
45:
2886
8
Caló V.
Nacci A.
Monopoli A.
Montingelli F.
J. Org. Chem.
2005,
70:
6040
9
Son SU.
Jang Y.
Park J.
Na HB.
Park HM.
Yun HJ.
Lee J.
Hyeon T.
J. Am. Chem. Soc.
2004,
126:
5026
10
Li Y.
Zhou P.
Dai Z.
Hu Z.
Sun P.
Bao J.
New J. Chem.
2006,
30:
832
11a
Beletskaya IP.
Latyshev GV.
Tsvetkov AV.
Lukashev NV.
Tetrahedron Lett.
2003,
44:
5011
11b
Wang L.
Li P.
Zhang Y.
Chem. Commun.
2004,
514
12
Zhou P.
Li Y.
Sun P.
Zhou J.
Bao J.
Chem. Commun.
2007,
1418
13
Thorand S.
Krause N.
J. Org. Chem.
1998,
63:
8551
14
Siemsen P.
Livingston RC.
Diederich F.
Angew. Chem. Int. Ed.
2000,
39:
2632
15
Typical Experimental Procedure
To NMP (2 mL) were added aryl halide (1 mmol) and terminal alkyne (1 mmol), then cobalt nanoparticles (0.03 mmol, 3 mol%), Ph3 P (0.1 mmol, 10 mol%), CuI (0.02 mmol, 2 mol%), and K2 CO3 (1.5 mmol) were added in turn. The mixture was heated at 120 °C (for aromatic alkyne) or 80 °C (for aliphatic alkyne) with stirring under a nitrogen atmosphere for the appropriate time (see Table
[1 ]
, monitored by TLC) until the reaction was complete, then centrifuged. The solution was separated and the precipitate was washed with Et2 O (3 × 5 mL). The solutions were combined and washed with H2 O, dried over anhyd Na2 SO4 , and purified by column chromatography on SiO2 with hexane-EtOAc (100:1) as eluent to yield the products. The precipitate was further washed sufficiently with MeOH and Et2 O, then dried, and the cobalt nanoparticles were recovered. After being reused three times, the yield of the product did not obviously decrease. 1-Methyl-4-phenylethynylbenzene: mp 71 °C. 1 H NMR (400 MHz, CDCl3 ): δ = 7.53-7.56 (m, 2 H), 7.45 (d, J = 8.0 Hz, 2 H), 7.35-7.38 (m, 3 H), 7.18 (d, J = 8.0 Hz, 2 H), 2.39 (s, 3 H). IR (KBr): ν = 3018, 2235, 1630, 1547 cm-1 . MS: m/z (%) = 192 (100) [M+ ], 101 (32). Hex-1-ynyl-benzene: light yellow oil. 1 H NMR (400 MHz, CDCl3 ): δ = 7.42 (d, J = 8.0 Hz, 2 H), 7.28-7.32 (m, 3 H), 2.41 (t, J = 6.9 Hz, 2 H), 1.47-1.62 (m, 4 H), 0.95 (t, J = 6.9 Hz, 3 H). IR (neat): ν = 3025, 2988, 2225, 1620, 1526 cm-1 . MS: m/z (%) = 158 (27) [M+ ], 115 (100), 129 (59), 143 (44).