Subscribe to RSS
DOI: 10.1055/s-2008-1072630
Enantioselective Synthesis of 3,3-Disubstituted Indolines via Asymmetric Intramolecular Carbolithiation in the Presence of (-)-Sparteine [1]
Publication History
Publication Date:
07 May 2008 (online)
Abstract
The functionalized N-benzyl-protected bromoanilines underwent an asymmetric intramolecular carbolithiation in the presence of t-BuLi and (-)-sparteine yielding 3,3-disubstituted indolines.
Key words
asymmetric synthesis - indolines - lithiations - natural products - sparteine
Asymmetric Carbolithiations, Part II; for part I, see reference 10b.
- 2
Yu QS.Atack JR.Rapoport SI.Brossi A. J. Med. Chem. 1988, 31: 2297 - 3
Jossang A.Jossang P.Hadi HA.Sevenet T.Bodo B. J. Org. Chem. 1991, 56: 6527 - 4
Anderton N.Cockrum PA.Colegate SM.Edgar JA.Flower K.Vit I.Willing RI. Phytochemistry 1998, 48: 437 - 5
Cui C.-B.Kakeya H.Osada H. Tetrahedron 1996, 52: 12651 - For an overview, see:
-
6a
Somei M.Yamada F. Nat. Prod. Rep. 2005, 22: 73 -
6b
Kawasaki T.Higuchi K. Nat. Prod. Rep. 2005, 22: 761 -
6c
Borschberg H.-J. Curr. Org. Chem. 2005, 9: 1465 - Some recent examples. Horsfiline:
-
7a
Trost BM.Brennan MK. Org. Lett. 2006, 8: 2027 -
7b
Murphy JA.Tripoli R.Khan TA.Mali UW. Org. Lett. 2005, 7: 3287 -
7c
Chang M.-Y.Pai C.-L.Kung Y.-H. Tetrahedron Lett. 2005, 46: 8463 - Physostigmin:
-
7d
Trost BM.Zhang Y. J. Am. Chem. Soc. 2006, 128: 4590 -
7e
Mukai C.Yoshida T.Sorimachi M.Odani A. Org. Lett. 2006, 8: 83 -
7f
Santos PF.Srinivasan N.Almeida PS.Lobo AM.Prabhakar S. Tetrahedron 2005, 61: 9147 - Spirotryprostatins:
-
7g
Marti C.Carreira EM. J. Am. Chem. Soc. 2005, 127: 11505 -
7h
Miyake FY.Yakushijin K.Horne DA. Angew. Chem. Int. Ed. 2004, 43: 5357 -
7i
Onishi T.Sebahar PR.Williams RM. Org. Lett. 2003, 5: 3135 - 8
Hills ID.Fu GC. Angew. Chem. Int. Ed. 2003, 42: 3921 ; Angew. Chem. 2003, 115, 4051 - 9
Ready JM.Reisman SE.Hirata M.Weiss MM.Tamaki K.Ovaska TV.Wood JL. Angew. Chem. Int. Ed. 2004, 43: 1270 ; Angew. Chem. 2004, 116, 1290 -
10a
Bailey WF.Mealy MJ. J. Am. Chem. Soc. 2000, 122: 6787 -
10b
Sanz Gil G.Groth UM. J. Am. Chem. Soc. 2000, 122: 6789 - For recent articles on (intramolecular) carbolithiations, see:
-
11a
Oestreich M.Hoppe D. Tetrahedron Lett. 1999, 40: 1881 -
11b
Marek I. J. Chem. Soc., Perkin Trans. 1 1999, 535 -
11c
Laqua H.Frohlich R.Wibbeling B.Hoppe D. J. Organomet. Chem. 2001, 624: 96 -
11d
Rychnovsky SD.Hata T.Kim AI.Buckmelter AJ. Org. Lett. 2001, 3: 807 -
11e
Mealy MJ.Bailey WF. J. Organomet. Chem. 2002, 646: 59 -
11f
Bailey WF.Luderer MR.Mealy MJ. Tetrahedron Lett. 2003, 44: 5303 -
11g
Barluenga J.Fananas FJ.Sanz R.Marcos C. Chem. Eur. J. 2005, 11: 5397 - 12
Schütz T. Synlett 2003, 901 -
13a
Hoppe D.Zschage O. Angew. Chem., Int. Ed. Engl. 1989, 28: 69 ; Angew. Chem. 1989, 101, 67 -
13b
Hoppe D.Hintze F.Tebben P. Angew. Chem., Int. Ed. Engl. 1990, 29: 1422 ; Angew. Chem. 1990, 102, 1457 -
13c
Hoppe D. In Encyclopedia of Reagents for Organic Synthesis Vol. 7:Paquette LA. Wiley; Chichester: 1995. p.4662-4664 -
13d
Hoppe D.Hense T. Angew. Chem., Int. Ed. Engl. 1997, 36: 2282 ; Angew. Chem. 1997, 109, 2376 -
13e
Özlügedik M.Kristensen J.Wibbeling B.Fröhlich R.Hoppe D. Eur. J. Org. Chem. 2002, 414 -
13f
Hoppe D. In Topics in Organometallic Chemistry Vol. 5:Hodgson DM. Springer; Heidelberg: 2003. p.61-138 -
14a
Kerrick ST.Beak P. J. Am. Chem. Soc. 1991, 113: 9708 -
14b
Weisenburger GA.Beak P. J. Am. Chem. Soc. 1996, 118: 12218 -
14c
Beak P.Basu A.Gallagher DJ.Park YS.Thayumanavan S. Acc. Chem. Res. 1996, 29: 552 -
14d
Basu A.Thayumanavan S. Angew. Chem. Int. Ed. 2002, 41: 716 ; Angew. Chem. 2002, 114, 740 -
15a
Normant JF. Top. Organomet. Chem. 2003, 5: 287 -
15b
Najera C.Sansano JM.Yus M. Tetrahedron 2003, 59: 9255 -
15c
Sotomayor N.Lete E. Curr. Org. Chem. 2003, 7: 275 - 18
Shapiro MJ.Archinal AE.Jarema MA. J. Org. Chem. 1989, 54: 5826 -
19a
Olofson RA.Abbott DE. J. Org. Chem. 1984, 49: 2795 -
19b
Olofson RA.Martz JT.Senet JP.Piteau M.Malfroot T. J. Org. Chem. 1984, 49: 2081 -
19c
Olofson RA. Pure Appl. Chem. 1988, 60: 1715 -
21a
Ashimori A.Matsuura T.Overman LE.Poon DJ. J. Org. Chem. 1993, 58: 6949 -
21b
Matsuura T.Overman LE.Poom DJ. J. Am. Chem. Soc. 1998, 120: 6500 - 22
Wenkert E.Angell EC. Synth. Commun. 1988, 18: 1331
References and Notes
Asymmetric Carbolithiations, Part II; for part I, see reference 10b.
16General Procedure for the Carbolithiation: All experiments were carried out under an argon atmosphere using Schlenk techniques. A solution of substrate 5 (0.83 mmol) and (-)-sparteine (1.5 equiv) in toluene (10 mL) was cooled to -78 °C and t-BuLi (2.2 equiv, 1.5 M in pentane) was added. The reaction mixture was stirred for 16 h at this temperature. MeOH (5 mL) was added to quench the lithium intermediate. After addition of sat. NH4Cl solution (10 mL) and H2O (10 mL) the aqueous layer was extracted using EtOAc (3 × 30 mL). The combined organic phases were dried (MgSO4), filtered and concentrated under reduced pressure. The residue was purified by flash chromatography to give the desired indoline 6.
17All products have been fully characterized by 1H NMR and 13C NMR. The analyses of known compounds are in agreement with the published data. The characteristics of selected compounds are as follows:
Compound 6b: [α]D
20 +32.4° (c = 1.15, CH2Cl2). 1H NMR (400 MHz, CDCl3): δ = 1.34 (s, 3 H, CMe), 3.01, 3.39 [2 × d, J = 8.2 Hz, 2 × 1 H, N(Bn)CH2], 3.33 (s, 3 H, OMe), 3.35, 3.59 (2 d, J
AB = 10 Hz, 2 H, CH
2OMe), 4.24, 4.31 (2 × d, J = 15.0 Hz, 2 × 1 H, NCH2Ph), 6.49 (d, J = 7.8 Hz, 1 H, ArH), 6.68 (t, J = 7.4 Hz, 1 H, ArH), 7.03-7.10 (m, 2 H, ArH), 7.24-7.35 (m, 5 H, ArH). 13C NMR (100.6 MHz, CDCl3): δ = 22.8 (CMe), 44.9 (CMe), 52.7 (CH2Ph), 59.3 (OMe), 63.1 [N(Bn)CH2], 79.0 (CH2O), 106.9, 117.5, 122.9, 127.0, 127.7, 128.0, 128.4 (7 × CHAr), 135.0 (CMeCAr), 138.4 (Cq,Ph), 151.5 (NCAr). MS (EI, 70 eV): m/z = 267 [M+], 222 [M+ - CH2 - OMe], 91 [C7H7
+]. IR (film): 3026, 2922, 2869, 2823, 1605, 1494, 1453, 1118 cm-1. Anal. Calcd for C18H21NO: C, 80.86; H, 7.92; N, 5.24. Found: C, 80.60; H, 7.82; N, 5.20.
Compound 6e: [α]D
20 +19.6° (c = 0.52, CH2Cl2). 1H NMR (400 MHz, CDCl3): δ = 1.28 (s, 3 H, CMe), 1.42-1.78 (m,
2 × 2 H, CH
2CH
2CH2OMe), 3.00, 3.18 (2 × d, J = 8.6 Hz, 2 × 1 H, NCH
2CMe), 3.27 (s, 3 H, OMe), 3.30 (t, J = 7.8 Hz, 2 H, CH
2OMe), 4.17, 4.29 (2 × d, J = 15.2 Hz, 2 × 1 H, NCH2Ph), 6.47 (d, J = 7.8 Hz, 1 H, ArH), 6.64-6.69 (m, 2 H, ArH), 6.98-7.34 (m, 6 H, ArH). 13C NMR (100.6 MHz, CDCl3): δ = 25.1, 25.9, 37.2, 43.3, 53.1, 58.5, 65.7, 73.2, 106.9, 117.6, 122.5, 127.1, 127.6, 127.8, 128.5, 137.4, 138.6, 151.5. MS (EI, 70 eV): m/z = 295 [M+], 222 [M + CH2CH2CH2OMe], 91 [C7H7
+].
Compound 6g: [α]D
20 +21.3° (c = 0.92, CH2Cl2). 1H NMR (400 MHz, CDCl3): δ = 1.37 (s, 3 H, CMe), 2.02 (s, 3 H, SMe), 2.73, 2.78 (2 × d, J = 12.8 Hz, 2 × 1 H, CH2SMe), 3.02, 3.38 [2 × d, J = 9.0 Hz, 2 × 1 H, N(Bn)CH2], 4.18, 4.33 (2 × d, J = 14.8 Hz, 2 × 1 H, NCH2Ph), 6.50 (d, J = 7.8 Hz, 1 H, ArH), 6.70 (t, J = 7.4 Hz, 1 H, ArH), 7.06-7.09 (m, 2 H, ArH), 7.24-7.37 (m, 5 H, ArH). 13C NMR (100.6 MHz, CDCl3): δ = 17.9 (CMe), 24.3 (SMe), 45.0 (CMe), 45.7 (CH2SMe), 52.9 (CH2Ph), 64.9 [N(Bn)CH2], 107.2, 117.7, 122.6, 127.1, 127.8, 128.1, 128.5 (7 × CHArH), 136.3 (Cq,ArH), 138.3, 151.2 (CqN). GC-MS (EI, 70 eV): m/z = 283 [M+], 222 [M+ - CH2 - SMe], 91 [C7H7
+]. Anal. Calcd for C18H21NS: C, 76.28; H, 7.47; N, 4.94. Found: C, 76.20; H, 7.47; N, 5.29.
Enantiomeric excess was determined using a HP 6890 Series GC System with a chiral column CycloSil-B (J&W Scientific).