References and Notes
1 Asymmetric Carbolithiations, Part II; for part I, see reference 10b.
2
Yu QS.
Atack JR.
Rapoport SI.
Brossi A.
J. Med. Chem.
1988,
31:
2297
3
Jossang A.
Jossang P.
Hadi HA.
Sevenet T.
Bodo B.
J. Org. Chem.
1991,
56:
6527
4
Anderton N.
Cockrum PA.
Colegate SM.
Edgar JA.
Flower K.
Vit I.
Willing RI.
Phytochemistry
1998,
48:
437
5
Cui C.-B.
Kakeya H.
Osada H.
Tetrahedron
1996,
52:
12651
For an overview, see:
6a
Somei M.
Yamada F.
Nat. Prod. Rep.
2005,
22:
73
6b
Kawasaki T.
Higuchi K.
Nat. Prod. Rep.
2005,
22:
761
6c
Borschberg H.-J.
Curr. Org. Chem.
2005,
9:
1465
Some recent examples. Horsfiline:
7a
Trost BM.
Brennan MK.
Org. Lett.
2006,
8:
2027
7b
Murphy JA.
Tripoli R.
Khan TA.
Mali UW.
Org. Lett.
2005,
7:
3287
7c
Chang M.-Y.
Pai C.-L.
Kung Y.-H.
Tetrahedron Lett.
2005,
46:
8463
Physostigmin:
7d
Trost BM.
Zhang Y.
J. Am. Chem. Soc.
2006,
128:
4590
7e
Mukai C.
Yoshida T.
Sorimachi M.
Odani A.
Org. Lett.
2006,
8:
83
7f
Santos PF.
Srinivasan N.
Almeida PS.
Lobo AM.
Prabhakar S.
Tetrahedron
2005,
61:
9147
Spirotryprostatins:
7g
Marti C.
Carreira EM.
J. Am. Chem. Soc.
2005,
127:
11505
7h
Miyake FY.
Yakushijin K.
Horne DA.
Angew. Chem. Int. Ed.
2004,
43:
5357
7i
Onishi T.
Sebahar PR.
Williams RM.
Org. Lett.
2003,
5:
3135
8
Hills ID.
Fu GC.
Angew. Chem. Int. Ed.
2003,
42:
3921 ; Angew. Chem. 2003, 115, 4051
9
Ready JM.
Reisman SE.
Hirata M.
Weiss MM.
Tamaki K.
Ovaska TV.
Wood JL.
Angew. Chem. Int. Ed.
2004,
43:
1270 ; Angew. Chem. 2004, 116, 1290
10a
Bailey WF.
Mealy MJ.
J. Am. Chem. Soc.
2000,
122:
6787
10b
Sanz Gil G.
Groth UM.
J. Am. Chem. Soc.
2000,
122:
6789
For recent articles on (intramolecular) carbolithiations, see:
11a
Oestreich M.
Hoppe D.
Tetrahedron Lett.
1999,
40:
1881
11b
Marek I.
J. Chem. Soc., Perkin Trans. 1
1999,
535
11c
Laqua H.
Frohlich R.
Wibbeling B.
Hoppe D.
J. Organomet. Chem.
2001,
624:
96
11d
Rychnovsky SD.
Hata T.
Kim AI.
Buckmelter AJ.
Org. Lett.
2001,
3:
807
11e
Mealy MJ.
Bailey WF.
J. Organomet. Chem.
2002,
646:
59
11f
Bailey WF.
Luderer MR.
Mealy MJ.
Tetrahedron Lett.
2003,
44:
5303
11g
Barluenga J.
Fananas FJ.
Sanz R.
Marcos C.
Chem. Eur. J.
2005,
11:
5397
12
Schütz T.
Synlett
2003,
901
13a
Hoppe D.
Zschage O.
Angew. Chem., Int. Ed. Engl.
1989,
28:
69 ; Angew. Chem. 1989, 101, 67
13b
Hoppe D.
Hintze F.
Tebben P.
Angew. Chem., Int. Ed. Engl.
1990,
29:
1422 ; Angew. Chem. 1990, 102, 1457
13c
Hoppe D. In Encyclopedia of Reagents for Organic Synthesis
Vol. 7:
Paquette LA.
Wiley;
Chichester:
1995.
p.4662-4664
13d
Hoppe D.
Hense T.
Angew. Chem., Int. Ed. Engl.
1997,
36:
2282 ; Angew. Chem. 1997, 109, 2376
13e
Özlügedik M.
Kristensen J.
Wibbeling B.
Fröhlich R.
Hoppe D.
Eur. J. Org. Chem.
2002,
414
13f
Hoppe D. In Topics in Organometallic Chemistry
Vol. 5:
Hodgson DM.
Springer;
Heidelberg:
2003.
p.61-138
14a
Kerrick ST.
Beak P.
J. Am. Chem. Soc.
1991,
113:
9708
14b
Weisenburger GA.
Beak P.
J. Am. Chem. Soc.
1996,
118:
12218
14c
Beak P.
Basu A.
Gallagher DJ.
Park YS.
Thayumanavan S.
Acc. Chem. Res.
1996,
29:
552
14d
Basu A.
Thayumanavan S.
Angew. Chem. Int. Ed.
2002,
41:
716 ; Angew. Chem. 2002, 114, 740
15a
Normant JF.
Top. Organomet. Chem.
2003,
5:
287
15b
Najera C.
Sansano JM.
Yus M.
Tetrahedron
2003,
59:
9255
15c
Sotomayor N.
Lete E.
Curr. Org. Chem.
2003,
7:
275
16
General Procedure for the Carbolithiation: All experiments were carried out under an argon atmosphere using Schlenk techniques. A solution of substrate 5 (0.83 mmol) and (-)-sparteine (1.5 equiv) in toluene (10 mL) was cooled to -78 °C and t-BuLi (2.2 equiv, 1.5 M in pentane) was added. The reaction mixture was stirred for 16 h at this temperature. MeOH (5 mL) was added to quench the lithium intermediate. After addition of sat. NH4Cl solution (10 mL) and H2O (10 mL) the aqueous layer was extracted using EtOAc (3 × 30 mL). The combined organic phases were dried (MgSO4), filtered and concentrated under reduced pressure. The residue was purified by flash chromatography to give the desired indoline 6.
17 All products have been fully characterized by 1H NMR and 13C NMR. The analyses of known compounds are in agreement with the published data. The characteristics of selected compounds are as follows:
Compound 6b: [α]D
20 +32.4° (c = 1.15, CH2Cl2). 1H NMR (400 MHz, CDCl3): δ = 1.34 (s, 3 H, CMe), 3.01, 3.39 [2 × d, J = 8.2 Hz, 2 × 1 H, N(Bn)CH2], 3.33 (s, 3 H, OMe), 3.35, 3.59 (2 d, J
AB = 10 Hz, 2 H, CH
2OMe), 4.24, 4.31 (2 × d, J = 15.0 Hz, 2 × 1 H, NCH2Ph), 6.49 (d, J = 7.8 Hz, 1 H, ArH), 6.68 (t, J = 7.4 Hz, 1 H, ArH), 7.03-7.10 (m, 2 H, ArH), 7.24-7.35 (m, 5 H, ArH). 13C NMR (100.6 MHz, CDCl3): δ = 22.8 (CMe), 44.9 (CMe), 52.7 (CH2Ph), 59.3 (OMe), 63.1 [N(Bn)CH2], 79.0 (CH2O), 106.9, 117.5, 122.9, 127.0, 127.7, 128.0, 128.4 (7 × CHAr), 135.0 (CMeCAr), 138.4 (Cq,Ph), 151.5 (NCAr). MS (EI, 70 eV): m/z = 267 [M+], 222 [M+ - CH2 - OMe], 91 [C7H7
+]. IR (film): 3026, 2922, 2869, 2823, 1605, 1494, 1453, 1118 cm-1. Anal. Calcd for C18H21NO: C, 80.86; H, 7.92; N, 5.24. Found: C, 80.60; H, 7.82; N, 5.20.
Compound 6e: [α]D
20 +19.6° (c = 0.52, CH2Cl2). 1H NMR (400 MHz, CDCl3): δ = 1.28 (s, 3 H, CMe), 1.42-1.78 (m,
2 × 2 H, CH
2CH
2CH2OMe), 3.00, 3.18 (2 × d, J = 8.6 Hz, 2 × 1 H, NCH
2CMe), 3.27 (s, 3 H, OMe), 3.30 (t, J = 7.8 Hz, 2 H, CH
2OMe), 4.17, 4.29 (2 × d, J = 15.2 Hz, 2 × 1 H, NCH2Ph), 6.47 (d, J = 7.8 Hz, 1 H, ArH), 6.64-6.69 (m, 2 H, ArH), 6.98-7.34 (m, 6 H, ArH). 13C NMR (100.6 MHz, CDCl3): δ = 25.1, 25.9, 37.2, 43.3, 53.1, 58.5, 65.7, 73.2, 106.9, 117.6, 122.5, 127.1, 127.6, 127.8, 128.5, 137.4, 138.6, 151.5. MS (EI, 70 eV): m/z = 295 [M+], 222 [M + CH2CH2CH2OMe], 91 [C7H7
+].
Compound 6g: [α]D
20 +21.3° (c = 0.92, CH2Cl2). 1H NMR (400 MHz, CDCl3): δ = 1.37 (s, 3 H, CMe), 2.02 (s, 3 H, SMe), 2.73, 2.78 (2 × d, J = 12.8 Hz, 2 × 1 H, CH2SMe), 3.02, 3.38 [2 × d, J = 9.0 Hz, 2 × 1 H, N(Bn)CH2], 4.18, 4.33 (2 × d, J = 14.8 Hz, 2 × 1 H, NCH2Ph), 6.50 (d, J = 7.8 Hz, 1 H, ArH), 6.70 (t, J = 7.4 Hz, 1 H, ArH), 7.06-7.09 (m, 2 H, ArH), 7.24-7.37 (m, 5 H, ArH). 13C NMR (100.6 MHz, CDCl3): δ = 17.9 (CMe), 24.3 (SMe), 45.0 (CMe), 45.7 (CH2SMe), 52.9 (CH2Ph), 64.9 [N(Bn)CH2], 107.2, 117.7, 122.6, 127.1, 127.8, 128.1, 128.5 (7 × CHArH), 136.3 (Cq,ArH), 138.3, 151.2 (CqN). GC-MS (EI, 70 eV): m/z = 283 [M+], 222 [M+ - CH2 - SMe], 91 [C7H7
+]. Anal. Calcd for C18H21NS: C, 76.28; H, 7.47; N, 4.94. Found: C, 76.20; H, 7.47; N, 5.29.
18
Shapiro MJ.
Archinal AE.
Jarema MA.
J. Org. Chem.
1989,
54:
5826
19a
Olofson RA.
Abbott DE.
J. Org. Chem.
1984,
49:
2795
19b
Olofson RA.
Martz JT.
Senet JP.
Piteau M.
Malfroot T.
J. Org. Chem.
1984,
49:
2081
19c
Olofson RA.
Pure Appl. Chem.
1988,
60:
1715
20 Enantiomeric excess was determined using a HP 6890 Series GC System with a chiral column CycloSil-B (J&W Scientific).
21a
Ashimori A.
Matsuura T.
Overman LE.
Poon DJ.
J. Org. Chem.
1993,
58:
6949
21b
Matsuura T.
Overman LE.
Poom DJ.
J. Am. Chem. Soc.
1998,
120:
6500
22
Wenkert E.
Angell EC.
Synth. Commun.
1988,
18:
1331