Subscribe to RSS
DOI: 10.1055/s-2008-1072725
Regioselective Markovnikov Hydrochalcogenation of Terminal Alkynes with Indium(III) Benzenechalcogenolates
Publication History
Publication Date:
16 April 2008 (online)
Abstract
Indium(III) benzenechalcogenolates (chalcogen = sulfur and selenium) promote the rigorous Markovnikov hydrochalcogenation of terminal alkynes. The generality and limitations of the reaction with aminoalkynes leading to allylic amines bearing vinylic chalcogenide substituents are discussed.
Key words
indium(III) benzenechalcogenolates - aminoalkynes - hydrochalcogenation - regioselective Markovnikov addition.
- For radical addition of thiols into alkynes, see:
-
1a
Mitsudo T.Kondo T. Chem. Rev. 2000, 100: 3205 and references therein - For selenols:
-
1b
Comasseto JV.Ferreira JTB. J. Organomet. Chem. 1981, 216: 287 - For cesium thiolates, see:
-
2a
Kondoh A.Takami K.Yorimitsu H.Oshima K. J. Org. Chem. 2005, 70: 6468 - For sodium thiolates, see:
-
2b
Truce WE.Tichenor GJW. J. Org. Chem. 1972, 37: 2391 -
2c
Truce WE.Simms JA.Boudakian MM. J. Am. Chem. Soc. 1956, 78: 695 -
2d
Truce WE.Simms JA. J. Am. Chem. Soc. 1956, 78: 2756 - For lithium selenolates, see:
-
2e
Zeni G.Stracke MP.Nogueira CW.Braga AL.Menezes PH.Stefani HA. Org. Lett. 2004, 6: 1135 - For hydroselenation catalyzed by Pd and Pt compounds, see:
-
3a
Ananikov VP.Malyshev DA.Beletskaya IP.Aleksandrov GG.Eremenko IL. J. Organomet. Chem. 2003, 679: 162 -
3b
Kamiya I.Nishinaka E.Ogawa A. J. Org. Chem. 2005, 70: 696 - For hydrothiolation catalyzed by nickel(II) compounds, see:
-
3c
Ananikov VP.Malyshev DA.Beletskaya IP.Aleksandrov GG.Eremenko IL. Adv. Synth. Catal. 2005, 347: 1993 -
3d
Ananikov VP.Orlov NV.Beletskaya IP. Organometallics 2006, 25: 1970 - For hydrothiolation catalyzed by Pd compounds, see:
-
3e
Ogawa A.Ikeda A.Kimura K.Hirao T. J. Am. Chem. Soc. 1999, 121: 5108 ; and references therein -
3f
Ananikov VP.Orlov NV.Beletskaya IP.Khrustalev VN.Antipin MY.Timofeeva TV. J. Am. Chem. Soc. 2007, 129: 7252 - For hydrothiolation catalyzed by a rhodium compound, see:
-
3g
Cao C.Fraser LR.Love JA. J. Am. Chem. Soc. 2005, 127: 17614 - For β-hydroxyselenides, see:
-
4a
Barros OSD.de Carvalho AB.Lang ES.Peppe C. Lett. Org. Chem. 2004, 1: 43 - For β-hydroxysulfides, see:
-
4b
Ranu BC.Mandal T. Can. J. Chem. 2006, 84: 762 - 5
Ranu BC.Mandal T. J. Org. Chem. 2004, 69: 5793 - 6
Ranu BC.Chattopadhyay K.Banerjee S. J. Org. Chem. 2006, 71: 423 - 7
Peppe C.Lang ES.Ledesma GN.de Castro LB.Barros OSD.Mello PD. Synlett 2005, 3091 - For hydroselenation, see:
-
8a
Barros OSD.Lang ES.de Oliveira CAF.Peppe C.Zeni G. Tetrahedron Lett. 2002, 43: 7921 - For hydrotelluration, see:
-
8b
Barros OSD.Lang ES.Peppe C.Zeni G. Synlett 2003, 1725 -
9a
Gerard J.Hevesi L. Tetrahedron 2001, 57: 9109 -
9b
Okamura H.Miura M.Takei H. Tetrahedron Lett. 1979, 20: 43 -
9c
Okamura H.Miura M.Kosugi K.Takei H. Tetrahedron Lett. 1980, 21: 87 - 10
Annan TA.Kumar R.Mabrouk HE.Tuck DG.Chadha RK. Polyhedron 1989, 8: 865 -
11a Aminoalkynes 5a,d-f were prepared from propargyl bromide and the corresponding amine, 5h was prepared from 3-chloro-3-metyl-1-butyne according to:
Hennion GF.Nelson KW. J. Am. Chem. Soc. 1957, 79: 2142 -
11b Compounds 5g,i,j were prepared from the corresponding propargyl p-toluenosulfonate and dialkylamines according to:
Brandsma L. Preparative Acetylenic Chemistry 2nd ed.: Elsevier; New York: 1988. -
11c Compound 5b was prepared from propargylamine 5a according to:
Lo MM.-C.Neumann CS.Nagayama S.Perlstein EO.Schreiber SL. J. Am. Chem. Soc. 2004, 126: 16077 -
11d
Compound 5c was obtained commercially from Aldrich.
- 14
Gulliver DJ.Hope EG.Levason W. J. Chem. Soc., Perkin Trans. 2 1984, 429 -
15a
Sakai N.Kanada R.Hirasawa M.Konakahara T. Tetrahedron 2005, 61: 9298 -
15b
Sakai N.Hirasawa M.Konakahara T. Tetrahedron Lett. 2003, 44: 4171 - 19
Kuniyasu H.Ogawa A.Sato K.-I.Ryu I.Kambe N.Sonoda N. J. Am. Chem. Soc. 1992, 114: 5902 - 20
Kawakita M.Yokota K.Akamatsu H.Irisawa S.Morikawa O.Konishi H.Kobayashi K. J. Org. Chem. 1997, 62: 8015
References and Notes
General Procedure for the Markovnikov Hydrochalcogenation of the Aminoalkynes
A Schlenk tube equipped with a reflux condenser, under N2 atmosphere, was charged with DCE (2 mL), i-PrOH (0.1 mL), aminoalkyne 5 (1 mmol), and In(EPh)3 (1 mmol). The mixture was heated, under reflux, for 6 h. At the end of this period, the reaction was quenched with H2O (10 mL), the organics extracted with CH2Cl2 (2 × 15 mL). The extract was dried (Na2SO4) and evaporated to dryness under vacuum. The oily residue was purified by column chromatography (SiO2, hexanes-EtOAc) to produce the adducts 6 and 6′ as heavy oils and in yields given in Table
[2]
.
Spectroscopic Data for Compounds 6
2-(Phenylthio)prop-2-en-1-amine (6a):19 1H NMR (CDCl3): δ = 7.54-7.17 (m, 5 H), 5.31 (t, J = 1.2 Hz, 1 H), 4.98 (s, 1 H), 3.28 (s, 2 H), 1.82 (s, 2 H). 13C NMR (CDCl3): δ = 136.96, 132.51, 129.08, 128.60, 127.65, 113.59, 46.87.
2-(Phenylseleno)prop-2-en-1-amine (6′a): 1H NMR (CDCl3): δ = 7.43 (m, 2 H), 7.18 (m, 3 H), 5.61 (s, 1 H), 5.19 (s, 1 H), 3.30 (s, 2 H), 1.70 (s, 2 H). 13C NMR (CDCl3): δ = 144.50, 133.89, 128.98, 128.15, 127.47, 116.45, 48.37.
4-Methyl-N-(2-(phenylthio)allyl)benzenesulfonamide (6b): 1H NMR (CDCl3): δ = 7.62 (m, 2 H), 7.19 (m, 7 H), 5.35 (s, 1 H), 5.03 (s, 1 H), 3.56 (s, 2 H), 2.31 (s, 3 H). Fast decomposition in CDCl3 solution prevented the recording of a satisfactory 13C NMR spectrum.
N-[2,2-Bis(phenylthio)propyl]-4-methylbenzenesulfon-
amide (secondary product): 1H NMR (CDCl3): δ = 7.71 (m, 2 H), 7.45 (m, 4 H), 7.37 (m, 2 H), 7.30 (m, 6 H), 5.13 (t, J = 6.0 Hz, 1 H), 2.98 (d, J = 6.0 Hz, 2 H), 2.36 (s, 3 H), 1.19 (s, 3 H). 13C NMR (CDCl3): δ = 143.45, 136.91, 136.50, 129.85, 129.68, 129.60, 128.80, 127.04, 61.41, 50.58, 25.64, 21.47.
4-Methyl-N-[2-(phenylseleno)allyl]benzenesulfonamide (6′b): 1H NMR (CDCl3): δ = 7.61 (m, 2 H), 7.32 (m, 2 H), 7.18 (m, 5 H), 5.67 (s, 1 H), 5.25 (s, 1 H), 3.60 (s, 2 H), 2.32 (s, 3 H). 13C NMR (CDCl3): δ = 143.32, 136.78, 136.71, 133.85, 129.50, 129.27, 127.86, 127.62, 127.02, 120.61, 48.69, 21.39.
N-Methyl-2 (phenylthio)prop-2-en-1-amine (6c): 1H NMR (CDCl3): δ = 7.38-7.18 (m, 5 H), 5.26 (s, 1 H), 4.96 (s, 1 H), 3.23 (s, 2 H), 2.29 (s, 3 H), 1.64 (s, 1 H). 13C NMR (CDCl3): δ = 143.72, 132.88, 132.60, 129.06, 127.73, 114.68, 55.84, 34.92.
N-Methyl-2 (phenylseleno)prop-2-en-1-amine (6′c) 1H NMR (CDCl3): δ = 7.47 (m, 2 H), 7.22 (m, 3 H), 5.60 (s, 1 H), 5.14 (s, 1 H), 3.29 (s, 2 H), 2.29 (s, 3 H), 1.83 (s, 1 H). 13C NMR (CDCl3): δ = 141.59, 134.62, 129.20, 128.35, 127.81, 117.71, 57.40, 34.92.
N,N-Diethyl-2 (phenylthio)prop-2-en-1-amine (6d):20 1H NMR (CDCl3): δ = 7.43-7.20 (m, 5 H), 5.26 (s, 1 H), 4.73 (s, 1 H), 3.14 (s, 2 H), 2.50 (q, J = 7.1 Hz, 4 H), 0.95 (t, J = 7.1 Hz, 6 H). 13C NMR (CDCl3): δ = 145.24, 133.81, 133.05, 129.03, 127.86, 112.44, 58.33, 46.61, 11.54.
N,N-Diethyl-2 (phenylseleno)prop-2-en-1-amine (6′d): 1H NMR (CDCl3): δ = 7.53 (m, 2 H), 7.23 (m, 3 H), 5.55 (s, 1 H), 4.79 (s, 1 H), 3.24 (s, 2 H), 2.50 (q, J = 7.1 Hz, 4 H), 0,97 (t, J = 7.1 Hz, 6 H). 13C NMR (CDCl3): δ = 144.57, 135.85, 131.49, 129.11, 127.89, 113.83, 59.91, 46.45, 11.60.
4-[2-(Phenylthio)allyl]morpholine (6e): 1H NMR (CDCl3): δ = 7.39 (m, 2 H), 7.25 (m, 3 H), 5.20 (s, 1 H), 4.72 (s, 1 H), 3.65 (m, 4 H), 3.04 (s, 2 H), 2.37 (m, 4 H). 13C NMR (CDCl3): δ = 143.36, 134.15, 132.48, 129.06, 128.13, 112.84, 66.89, 63.86, 53.14.
4-[2-(Phenylseleno)allyl]morpholine (6′e): 1H NMR (CDCl3): δ = 7.52 (m, 2 H), 7.23 (m, 3 H), 5.51 (s, 1 H), 4.80 (s, 1 H), 3.64 (m, 4 H), 3.14 (s, 2 H), 2.38 (m, 4 H). 13C NMR (CDCl3): δ = 142.42, 136.03, 129.11, 128.40, 128.07, 114.44, 66.93, 65.30, 53.13.
1-[2-(Phenylthio)allyl)]piperidine (6f): 1H NMR (CDCl3): δ = 7.39 (m, 2 H), 7.24 (m, 3 H), 5.23 (s, 1 H), 4.74 (s, 1 H), 3.02 (s, 2 H), 2.33 (m, 4 H), 1.53 (m, 4 H), 1.36 (m, 2 H). 13C NMR (CDCl3): δ = 143.77, 133.96, 132.88, 129.06, 127.99, 112.90, 64.10, 54.18, 25.77, 24.25.
1-[2-(Phenylseleno)allyl)]piperidine (6′f): 1H NMR (CDCl3): δ = 7.53 (m, 2 H), 7.23 (m, 3 H), 5.51 (s, 1 H), 4.80 (s, 1 H), 3.11 (s, 2 H), 2.34 (m, 4 H), 1.53 (m, 4 H), 1.37 (m, 2 H). 13C NMR (CDCl3): δ = 143.23, 135.96, 129.11, 128.87, 127.96, 114.10, 65.54, 54.20, 25.83, 24.27.
4-[2-(Phenylthio)oct-1-en-3-yl]morpholine (6g): 1H NMR (CDCl3): δ = 7.40 (m, 2 H), 7.25 (m, 3 H), 5.00 (s, 1 H), 4.46 (s, 1 H), 3.65 (t, J = 4.6 Hz, 4 H), 2.80 (dd, J = 7.8, 6.1 Hz, 1 H), 2.49 (m, 4 H), 1.62 (m, 2 H), 1.24 (m, 6 H), 0.82 (t, J = 6.5 Hz, 3 H). 13C NMR (CDCl3): δ = 147.61, 136.62, 129.18, 128.58, 128.14, 113.58, 72.22, 67.18, 50.85, 31.85, 29.67, 26.32, 22.52, 14.01.
4-[2-(Phenylseleno)oct-1-en-3-yl]morpholine (6′g): 1H NMR (CDCl3): δ = 7.51 (m, 2 H), 7.25 (m, 3 H), 5.41 (s, 1 H), 4.68 (s, 1 H), 3.65 (t, J = 4.5 Hz, 4 H), 2.79 (dd, J = 8.2, 5.6 Hz, 1 H), 2.50 (m, 4 H), 1.56 (m, 2 H), 1.23 (m, 6 H), 0.82 (t, J = 6.2 Hz, 3 H). 13C NMR (CDCl3): δ = 147.62, 135.18, 132.07, 129.17, 128.41, 110.38, 71.49, 67.15, 50.85, 31.79, 29.87, 26.03, 22.50, 13.99.
4-[4-(Phenylthio)pent-4-enyl]morpholine (6j): 1H NMR (CDCl3): δ = 7.37-7.20 (m, 5 H), 5.09 (s, 1 H), 4.83 (s, 1 H), 3.63 (m, 4 H), 2.36 (m, 4 H), 2.23 (m, 4 H), 1.67 (quint, J = 7.9 Hz, 2 H). 13C NMR (CDCl3): δ = 145.26, 133.07, 129.09, 128.54, 127.77, 113.29, 66.71, 57.86, 53.49, 34.10, 24.92.
4-[4-(Phenylseleno)pent-4-enyl]morpholine (6′j): 1H NMR (CDCl3): δ = 7.45 (m, 2 H), 7.23 (m, 3 H), 5.43 (s, 1 H), 5.08 (s, 1 H), 3.64 (m, 4 H), 2.37 (m, 4 H), 2.28 (t, J = 7.5 Hz, 2 H), 2.23 (t, J = 7.5 Hz, 2 H), 1,67 (quint, J = 7.5 Hz, 2 H). 13C NMR (CDCl3): δ = 142.29, 134.54, 129.20, 128.65, 127.79, 117.19, 66.36, 57.64, 53.27, 35.76, 24.83.
We have searched for the reasons leading to this failure. From the reaction involving homopropargylamine 5i and In(SePh)3, we have isolated after 24 h of continuous reflux 1,2-bis(phenylseleno)ethane (PhSeCH2CH2SePh) in 62% of yield based on 5i. 1H NMR (CDCl3): δ = 7.35 (m, 4 H), 7.17 (m, 6 H), 3.05 (s, 4 H). 13C NMR (CDCl3): δ = 133.04, 131.45, 129.14, 127.21, 27.16.14 Bis(phenylseleno)ethane was similarly prepared by heating In(SePh)3, Et3N in DCE in 40% of yield. These facts strongly suggest parallel reactions between aminoalkynes 5i and 5j with DCE to form quaternary ammonium derivatives that inhibit or reduce the efficiency of the hydrochalcogenation reactions.
164-[3,3-Dideuterio-2-(phenylseleno)allyl]morpholine was prepared, in 83% of yield, according to the general method described above using D2O as the deuterium source: 1H NMR (CDCl3): δ = 7.52 (m, 2 H), 7.23 (m, 3 H), 5.51 (s, 0.2 H), 4.80 (s, 0.2 H), 3.64 (m, 4 H), 3.14 (s, 2 H), 2.38 (m, 4 H).
17(E)-4[2,3-Bis(phenylseleno)allyl]morpholine (7′e) was prepared in 53% of yield together with 6′e (24%) from aminoalkyne 5e (1 mmol), In(SePh)3 (1 mmol), and diphenyl diselenide (2 mmol) in anhyd DCE (4 mL) using the general procedure described in ref. 12.
Spectroscopic Data for 7′e
1H NMR (CDCl3): δ = 7.48 (m, 2 H), 7.33 (m, 2 H), 7.22 (m, 3 H), 7.18 (m, 3 H), 6.67 (s, 1 H), 3.67 (m, 4 H), 3.22 (s, 2 H), 2.42 (m, 4 H). 13C NMR (CDCl3): δ = 134.33, 133.04, 131.55, 129.53, 129.28, 129.21, 129.08, 127.84, 126.95, 123.81, 66.80, 63.26, 52.97; 2D-NOE: no effect involving the singlet at δ = 6.67 ppm as required by the E-stereo-
isomer.
Spectroscopic Data for the Products of Hydrochalcogenation of
n
-Decyne with Indium(III) Benzenechalcogenolates
2-Phenylselenodec-1-ene (2′):7 1H NMR (CDCl3): δ = 7.48 (m, 2 H), 7.22 (m, 3 H), 5.43 (s, 1 H), 5.04 (s, 1 H), 2.21 (t, J = 7.3 Hz, 2 H), 1.47 (quint, J = 7.3 Hz, 2 H), 1.20 (br s, 10 H), 0.82 (t, J = 6.8 Hz, 3 H). 13C NMR (CDCl3): δ = 143.5, 134.67, 129.13, 129.04, 127.65, 116.07, 38.32, 31.83, 29.32, 29.19, 28.81, 28.67, 22.64, 14.09.
(Z)- + (E)-2-Phenylselenodec-2-ene (8′; isolated as an unassigned 3:2 mixture of isomers): 1H NMR (CDCl3): δ = 7.38 (m, 2 H), 7.16 (m, 3 H), 5.89 (t, J = 7.3 Hz, 0.4 H), 5.71 (t, J = 7.1 Hz, 0.6 H), 2.18 (q, J = 7.1 Hz, 1.2 H), 2.03 (q, J = 7.3 Hz, 0.8 H), 1.92 (s, 3 H), 1.32 (quint, J = 7.3 Hz, 2 H), 1.21 (m, 8 H), 0.81 (t, J = 7.3 Hz, 1.2 H), 0.80 (t, J = 7.3 Hz, 1.8 H).
(Z)- + (E)-2-Phenylthiodec-2-ene (8, isolated as an unassigned 1:1 mixture of isomers): 1H NMR (CDCl3): δ = 7.34 (m, 5 H), 5.95 (tq, J = 7.3 Hz, 1.2 Hz, 0.5 H), 5.89 (tq, J = 7.3 Hz, 1.2 Hz, 0.5 H), 2.38 (q, J = 7.2 Hz, 1 H), 2.19 (q, J = 7.3 Hz, 1 H), 1.97 (d, J = 1.2 Hz, 1.5 H), 1.94 (d, J = 1.2 Hz, 1.5 H), 1.47 (m, 2 H), 1.35 (m, 8 H), 0.95 (m, 3 H).