Subscribe to RSS
DOI: 10.1055/s-2008-1072726
Isocyanide Addition to Acylphosphonates: A Formal Passerini Reaction of Acyl Chlorides
Publication History
Publication Date:
16 April 2008 (online)
Abstract
Acylphosphonates behave as carbonyl components in Passerini reactions with isocyanides and carboxylic acids. Under saponification, the adducts undergo a phospha-Brook rearrangement to form α-amidophosphates. As acylphosphonates are quantitatively formed from carboxylic derivatives, this new reductive procedure allows acyl chlorides to react as aldehydes in a Passerini-type reaction.
Key words
phosphonate - isocyanide - multicomponent reaction - Passerini reaction
- For recent reviews, see:
-
1a
Banfi L.Riva R. Org. React. (N. Y.) 2005, 65: 1 -
1b
Zhu J. Eur. J. Org. Chem. 2003, 1133 -
1c
Ugi I.Werner B.Dömling A. Molecules 2003, 8: 53 -
1d
Hulme C.Gore V. Curr. Med. Chem. 2003, 10: 51 -
1e
Bienaymé H.Hulme C.Oddon G.Schmitt P. Chem. Eur. J. 2000, 6: 3321 -
1f
Dömling A.Ugi I. Angew. Chem. Int. Ed. 2000, 39: 3168 -
1g
Dömling A. Chem. Rev. 2006, 106: 17 - 2
Nef JU. Justus Liebigs Ann. Chem. 1892, 270: 267 -
3a
Ugi I.Fetzer U. Chem. Ber. 1961, 94: 1116 -
3b
Westling M.Smith R.Livinghouse T. J. Org. Chem. 1986, 51: 1159 -
3c
Lee CH.Westling M.Livinghouse T.Williams AC. J. Am. Chem. Soc. 1992, 114: 4089 -
3d
Livinghouse T. Tetrahedron 1999, 55: 9947 -
3e
VanWangenen BC.Cardellina JH. Tetrahedron Lett. 1989, 30: 3605 -
3f
Adlington RM.Barrett AGM. Tetrahedron 1981, 37: 3935 -
4a
Chen JJ.Deshpande SV. Tetrahedron Lett. 2003, 44: 8873 -
4b
See also: ref. 3a and 3f.
- 5
El Kaim L.Pinot-Périgord E. Tetrahedron 1998, 54: 3799 -
6a
Oaksmith JM.Peters U.Ganem B. J. Am. Chem. Soc. 2004, 126: 13606 -
6b
Richter M.Herrmann C.Augustin M. J. Prakt. Chem. 1980, 322: 434 - 7
El Kaim L.Gaultier L.Grimaud L.Dos Santos A. Synlett 2005, 2335 -
8a
Patel DV.Rielly-Gauvin K.Ryono DE.Free CA.Rogers WL.Smith SA.DeForrest JM.Oehl RS.Petrillo EW. J. Med. Chem. 1995, 38: 4557 -
8b
Sun FY.Schmid E.Baumgartner A.Adler T.-D. Mutagenesis 2000, 15: 17 -
8c
Chevrier C.Le Nouen D.Defoin A.Tarnus C. Eur. J. Org. Chem. 2006, 2384 - 9 For a review see:
Pudovik AN.Konovalova IV. Synthesis 1979, 81 -
10a
Pudovik AN.Konovalova IV.Dedova LV. Zh. Obshch. Khim. 1964, 34: 2902 -
10b
Polezhaeva NA.Ovodova OV.Litivinov IA.El’shina EV.Naumov VA.Arbuzov BA. Izv. Akad. Nauk. SSSR, Ser. Khim. 1986, 8: 1860 -
10c
Fokin AV.Studnev YN.Rapkin AI.Pasevina KI.Verenikin OV.Kolomiets AF. Izv. Akad. Nauk. SSSR, Ser. Khim. 1981, 7: 1655 -
10d
Gallagher MJ.Jenkins ID. J. Chem. Soc. C 1969, 2605 -
11a
Hammerschmidt F.Schneyder E.Zbiral E. Chem. Ber. 1980, 113: 3891 -
11b
Tromelin A.El Manouni D.Burgada R. Phosphorus Sulfur Relat. Elem. 1986, 27: 301 -
11c
Ruel R.Bouvier J.-P.Young RN. J. Org. Chem. 1995, 60: 5209 -
11d
Barthel WF.Alexander BH.Giang PA.Hall SA. J. Am. Chem. Soc. 1955, 77: 2424 -
11e
Bausch CC.Johnson JS. Adv. Synth. Catal. 2005, 347: 1207 -
12a
Pudovik AN.Konovalova IV. J. Gen. Chem. USSR (Engl. Transl.) 1963, 33: 3026 -
12b
Fitch SJ.Moedritzer K. J. Am. Chem. Soc. 1962, 84: 1876 -
12c
Hammerschmidt F.Zbiral E. Monatsh. Chem. 1980, 111: 1015 -
12d
Nguyen LM.Niesor E.Bentzen C. J. Med. Chem. 1987, 30: 1426 -
13a
Hall LAR.Stephens CW.Drysdale JJ. J. Am. Chem. Soc. 1957, 79: 1768 -
13b
Demir AS.Reis O.Igdir AC.Esiringü I.Eymür S. J. Org. Chem. 2005, 70: 10584 -
13c
Demir AS.Reis B.Reis O.Eymür S.Göllü M.Tural S.Saglam G. J. Org. Chem. 2007, 72: 7439 -
13d
Demir AS.Reis O.Esiringu I.Reis B.Baris S. Tetrahedron 2007, 63: 160 - 14
Demir AS.Reis O.Kayalar M.Eymur S.Reis B. Synlett 2006, 3329
References and Notes
General Procedure for the Formation of Phosphonate 5: To acyl chloride 1 (2 mmol) was added neat trialkyl phosphite (1 equiv). The mixture was stirred under argon for 30 min. Toluene (1 M), isocyanide (1 equiv) and carboxylic acid (1 equiv) were then successively added. The mixture was stirred for 24 h under argon at r.t. (for alkyl acyl chlorides) or at 80 °C (for aromatic acyl chlorides). The solvent was then removed under reduced pressure to afford Passerini products after purification by flash column chromatography on silica gel. Data for 5a: mp 72-74 °C; R
f
(EtOAc-PE, 50:50): 0.1. 1H NMR (400 MHz, CDCl3): δ = 7.26-7.33 (m, 2 H), 7.18-7.24 (m, 3 H), 6.73 (d, J = 8.3 Hz, 1 H), 3.84-3.88 (m, 1 H), 3.88 (d, J
H-P = 10.8 Hz, 3 H), 3.84 (d, J
H-P = 10.6 Hz, 3 H), 2.69-2.80 (m, 1 H), 2.56-2.69 (m, 3 H), 2.18 (s, 3 H), 1.91-1.99 (m, 2 H), 1.68-1.78 (m, 2 H), 1.59-1.66 (m, 1 H), 1.33-1.47 (m, 2 H), 1.17-1.32 (m, 3 H). 13C NMR (100.6 MHz, CDCl3): δ = 169.1 (d, J
C-P = 5.9 Hz), 165.2 (d, J
C-P = 4.4 Hz), 141.4, 129.0, 128.9, 126.5, 83.3 (d, J
C-P = 152.2 Hz), 55.1 (d, J
C-P = 6.6 Hz), 54.5 (d, J
C-P = 7.3 Hz), 49.1, 35.6, 33.2, 33.1, 30.5 (d, J
C-P = 7.3 Hz), 25.9, 25.1, 21.6. IR (thin film): 3328, 3027, 2987, 1749, 1669, 1531, 1259, 1222, 1020 cm-1. HRMS: m/z calcd for C20H30NO6P: 411.1811; found: 411.1810.
Typical Procedure for the Conversion of 5a to 6a: To a solution of LiOH (1 mmol) in anhyd THF (0.25 M) was added 5a (1 equiv). The mixture was heated for 2 d at 65 °C under argon. After evaporation of the solvent under reduced pressure, the remaining salts were removed by washing the residue with a 1:1 mixture of CH2Cl2 and PE followed by filtration. Evaporation of the solvent gave 6a as a yellow oil in quantitative yield. 1H NMR (400 MHz, CDCl3): δ = 7.22-7.30 (m, 2 H), 7.13-7.22 (m, 3 H), 6.46 (d, J = 7.6 Hz, 1 H), 4.70-4.78 (m, 1 H), 3.80 (d, J
H-P = 10.9 Hz, 6 H), 3.75-3.83 (m, 1 H), 2.65-2.76 (m, 2 H), 2.16-2.25 (m, 2 H), 1.83-1.94 (m, 2 H), 1.65-1.76 (m, 2 H), 1.55-1.65 (m, 1 H), 1.27-1.43 (m, 2 H), 1.10-1.27 (m, 3 H). 13C NMR (100.6 MHz, CDCl3): δ = 168.5 (d, J
C-P = 4.4 Hz), 141.1, 128.9, 128.8, 126.5, 78.2 (d, J
C-P = 6.6 Hz), 55.2 (d, J
C-P = 6.6 Hz), 55.1 (d, J
C-P = 6.6 Hz), 48.5, 35.3 (d, J
C-P = 4.4 Hz), 33.4, 33.2, 30.8, 25.8, 25.1. IR (thin film): 3298, 2932, 2856, 1668, 1536, 1452, 1267, 1051 cm-1. HRMS: m/z calcd for C18H28NO5P: 369.1705; found: 369.1700.