Subscribe to RSS
DOI: 10.1055/s-2008-1072769
Silica-Supported Tetramethylguanidine: An Efficient Solid Base for Aldol-Type Coupling of Aldehydes with Ethyl Diazoacetate
Publication History
Publication Date:
07 May 2008 (online)
Abstract
Silica-supported tetramethylguanidine catalyst was prepared and effectively used in the aldol-type coupling of aldehydes with ethyl diazoacetate to afford the corresponding α-diazo-β-hydroxy esters in good to excellent yields. The catalyst was quantitatively recovered from the reaction by a simple filtration and reused for a number of cycles with almost consistent activity.
Key words
silica - tetramethylguanidine - aldol - α-hydroxy-β-diazoesters - reusable catalyst
- 1
Doyle MP.McKervey MA. Modern Catalytic Methods for Organic Synthesis with Diazo Compounds Wiley-Interscience; New York: 1998. -
2a
Regitz M.Maas G. Diazo Compounds, Properties and Synthesis Academic Press; Orlando, FL: 1986. -
2b
Kruglaya OA.Vyazankin NS. Russ. Chem. Rev. (Engl. Transl.) 1980, 49: 357 -
2c
Moody CJ.Mortt CN. Synthesis 1998, 1039 -
2d
Wang J.Yao W. Org. Lett. 2003, 5: 1527 -
3a
Schöllkopf U.Frasnelli H.Hoppe D. Angew. Chem., Int. Ed. Engl. 1970, 9: 300 -
3b
Schöllkopf U.Banhidai B.Frasnelli H.Meyer R.Beckhaus H. Justus Liebigs Ann. Chem. 1974, 1767 -
4a
Pellicciari R.Natalini B. J. Chem. Soc., Perkin Trans. 1 1977, 1882 -
4b
Pellicciari R.Natalini B.Sadeghpour BM.Marinozzi M.Snyder JP.Williamson BL.Kuethe JT.Padwa A. J. Am. Chem. Soc. 1996, 118: 1 -
4c
Moody CJ.Taylor RJ. Tetrahedron Lett. 1987, 28: 5351 - 5
Jiang N.Qu Z.Wang J. Org. Lett. 2001, 3: 2989 -
6a
Wenkert E.Pherson AAM. J. Am. Chem. Soc. 1972, 94: 8084 -
6b
Burkoth TL. Tetrahedron Lett. 1969, 57: 5049 -
6c
Woolsey NF.Khalil MH. J. Org. Chem. 1972, 37: 2405 -
7a
Jiang N.Wang J. Tetrahedron Lett. 2002, 43: 1285 -
7b
Xiao F.Liu Y.Wang J. Tetrahedron Lett. 2007, 48: 1147 - 8
Varala R.Ramu E.Nuvula S.Adapa SR. Tetrahedron Lett. 2006, 47: 877 - 9
Sreebdhar B.Balasubrahmanyam V.Sridhar C.Prasad MN. Catal. Commun. 2005, 6: 517 -
10a
Mizuno N.Misono M. Chem. Rev. 1998, 98: 199 -
10b
Sartori G.Ballini R.Bigi F.Bosica G.Maggi R.Righi P. Chem. Rev. 2004, 104: 199 - 11
Kantam ML.Chakrapani L.Ramani T. Tetrahedron Lett. 2007, 48: 6121 - 12
Kantam ML.Balasubrahmanyam V.Kumar KBS.Venkanna GT.Figueras F. Adv. Synth. Catal. 2007, 349: 1887 -
13a
Faria EA.Ramalho HF.Marques JS.Suarez PAZ.Prado AGS. Appl. Catal. A: Gen. 2008, 338: 72 -
13b
DeOliveira E.Torres JD.Silva CC.Luz AAM.Bakuzis P.Prado AGS. J. Braz. Chem. Soc. 2006, 17: 994 -
13c
Blanc AC.Macquarrie DJ.Valle S.Renard G.Quinn CR.Brunel D. Green Chem. 2000, 2: 283 - 14
Corma A.Garcia H. Adv. Synth. Catal. 2006, 348: 1391 - 17
Fujita N.Motokura K.Mori K.Mizugaki T.Ebitani K.Jitsukawa K.Kaneda K. Tetrahedron Lett. 2006, 47: 5083
References and Notes
Preparation of Silica-Based Catalysts; SiO 2 -TMG: 3-Chloropropyl-modified silica, 1 (5 g, 2.5% loading, Aldrich) was dispersed in dry hexane (50 mL) under nitrogen and then hexamethyldisilazane (HMDS, 5 mL) was added to the dispersion and refluxed for 8 h, cooled to r.t., filtered and washed with copious amount of hexane to get the trimethylsilylated chloropropyl modified silica 2. Trimethylsilylated chloropropyl modified silica, 2 (1 g) was stirred with tetramethylguanidine (TMG, 2 mmol) and Et3N (1 mmol) in MeOH (20 mL) under nitrogen at 110 °C for 24 h. Afterwards the solid was separated by filtration and once again washed with toluene using Sohxlet for 24 h to afford SiO2-TMG (loading of TMG: 0.16 mmol/g, calculated from elemental analysis). SiO2-IMZ was prepared in a similar fashion using imidazole (loading of IMZ: 0.14 mmol/g, calculated from elemental analysis). SiO2-NH2 (loading 1 mmol/g) was purchased from Aldrich.
16
General Procedure for Aldol-Type Coupling of Aldehydes with EDA: A mixture of aldehyde (0.5 mmol), EDA (1.2 equiv), and SiO2-TMG (50 mg) in DMSO (1 mL) was stirred in a round-bottom flask at r.t. After completion of the reaction, as monitored by TLC, the mixture was diluted with EtOAc (10 mL) and the catalyst was filtered off. The filtrate was washed with sat. aq NH4Cl solution, followed by brine. The organic layer was dried over anhydrous Na2SO4 and the solvent was evaporated under reduced pressure to get the crude product. The crude product was purified by chromatography on silica gel using hexane-EtOAc mixture as eluent to afford the corresponding α-diazo-β-hydroxy esters. Spectroscopic data of the new compounds are as follows:
2-Diazo-3-hydroxy-3-(3-phenoxyphenyl)propionic Acid Ethyl Ester (Table
[3]
, entry 7): FTIR (neat): 3441, 2982, 2099, 1680, 1586, 1483, 1291, 1243, 1113, 756 cm-1. 1H NMR (300 MHz, CDCl3): δ = 7.20-7.37 (m, 3 H), 7.00-7.15 (m, 3 H), 6.84-6.99 (m, 3 H), 5.82 (s, 1 H), 4.23 (q, J = 6.8 Hz, 2 H), 3.72 (br s, 1 H), 1.28 (t, J = 6.8 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 166.2, 157.7, 157.0, 141.0, 130.0, 129.8, 123.4, 120.5, 118.9, 118.5, 116.2, 68.4, 61.2, 14.37 (one quaternary C was not observed). MS-ESI: m/z = 335 [M + Na]. Anal Calcd for C17H16N2O4: C, 65.38; H, 5.16; N, 8.97. Found: C, 65.32; H, 5.19; N, 8.94.
3-(4-Benzyloxy-3-methoxyphenyl)-2-diazo-3-hydroxy-
propionic Acid Ethyl Ester (Table
[3]
, entry 8): FTIR (KBr): 3446, 2932, 2104, 1674, 1513, 1394, 1229, 1114, 740 cm-1. 1H NMR (300 MHz, CDCl3): δ = 7.19-7.50 (m, 5 H), 6.95 (s, 1 H), 6.83 (s, 2 H), 5.79 (s, 1 H), 5.13 (s, 2 H), 4.29 (q,
J = 6.8 Hz, 2 H), 3.91 (s, 3 H), 3.1 (br s, 1 H), 1.34 (t, J = 6.8 Hz, 3 H). 13C NMR (100 MHz, CDCl3): δ = 166.4, 150.0, 148.2, 137.0, 131.8, 128.5, 127.7, 127.2, 117.9, 114.1, 109.4, 71.0, 68.5, 61.1, 56.1, 14.4 (one quaternary C was not observed). MS-ESI: m/z = 357 [M + 1]. Anal. Calcd for C19H20N2O5: C, 64.04; H, 5.66; N, 7.86. Found: C, 64.01; H, 5.68; N, 7.90.