Zusammenfassung
Schilddrüsenknoten liegen in bis zu 30 % der deutschen Bevölkerung vor und zählen
damit zu den häufigsten endokrinologischen Erkrankungen. Schilddrüsenknoten sind außerordentlich heterogen.
Die Entstehung von Tumoren mit unterschiedlichen funktionellen und morphologischen
Eigenschaften aus einer einzigen Vorläuferzelle ist ein besonderes Charakteristikum
der Schilddrüse (SD) und wird durch spezifische genetische Veränderungen verursacht.
Bei etwa 60–70 % der differenzierten SD-Karzinome sind Mutationen in bekannten Genen
nachweisbar, die über konstitutive Signaltransduktionsaktivierung den Phänotyp des
Karzinoms determinieren. In sporadischen papillären SD-Karzinomen (PTCs) liegen BRAF-
(oder seltener RAS-)Mutationen vor, während chromosomale Rearrangements (RET, TRK,
AKAP9 / BRAF) vorrangig in strahleninduzierten PTCs auftreten. Diese genetischen Veränderungen
führen zur MAPKinasen-Aktivierung. In follikulären SD-Karzinomen (FTC) liegen RAS-Mutationen
oder PAX8 / PPARγ-Rearrangements vor, diese sind allerdings auch in einem Teil der
follikulären Adenome (FA) nachgewiesen. Des Weiteren zeigen aktuelle Arbeiten, dass
eine Aktivierung der PI3K / AKT-Signaltransduktion in follikulären SD-Tumoren besonders
häufig ist. Undifferenzierte (anaplastische) Schilddrüsenkarzinome (ATC) weisen genetische
Merkmale von FTC oder PTC auf und darüber hinaus eine drastische Aktivierung mehrerer
Tyrosinkinasekaskaden (Überexpression oder Mutationen im PI3K und MAPKinase-Pathway).
Dies unterstreicht das Konzept einer sequenziellen Entwicklung eines ATC aus einem
differenzierten SD-Karzinom, als dessen Triggermechanismus die p53-Inaktivierung angesehen
wird.
Mit Ausnahme der SD-Autonomie, die durch konstitutive cAMP-Aktivierung (TSHR oder
seltener Gs-α-Protein-Mutationen) verursacht wird, ist die molekulare Pathogenese
von benignen SD-Tumoren, insbesondere der kalten Knoten, noch ungeklärt.
Abstract
Thyroid nodules are the most frequent endocrine disorder and occur in approximately
30 % of the German population. Thyroid nodular disease constitutes a very heterogeneous
entity. A striking diversity of possible functional and morphological features of
a thyroid tumour derived from the same thyroid ancestor cell, is a hallmark of thyroid
tumorigenesis and is due to specific genetic alterations. Defects in known candidate
genes can be found in up to 70 % of differentiated thyroid carcinomas and determine
the respective cancer phenotype. Papillary thyroid cancers (PTC) harbour BRAF (or
much less frequently RAS) mutations in sporadically occurring tumours, while radiation-induced
PTC display chromosomal rearrangements such as RET, TRK, APR9 / BRAF. These genetic
events results in constitutive MAPKinase activation. Follicular thyroid cancers (FTC)
harbour RAS mutations or PAX8 / PPARγ rearrangements, both of which, however have
also been identified in follicular adenoma. In addition, recent studies show, that
activation of PI3K / AKT signalling occurs with high frequency in follicular thyroid
tumours. Undifferentiated (anaplastic) thyroid cancers (ATC) display genetic features
of FTC or PTC, in addition to aberant activation of multiple tyrosinkinase pathways
(overexpression or mutations in PI3K and MAPK pathways). This underscores the concept
of a sequential evolution of ATC from differentiated thyroid cancer, a process widely
conceived to be triggered by p53 inactivation. In contrast, the molecular pathogenesis
of benign thyroid tumours, in particular cold thyroid nodules is less known, except
for toxic thyroid nodules, which arise from constitutive activation of cAMP signalling,
predominantly through TSHR mutations.
Schlüsselwörter
noduläre Schilddrüsenerkrankungen - Schilddrüsenkarzinome - benigner Schilddrüsenknoten
- Differenzialdiagnostik
Key words
nodular thyroid disease - thyroid carcinoma - benign thyroid nodules - differential
diagnosis
Literatur
- 1
Reiners C, Wegscheider K, Schicha H et al.
Prevalence of thyroid disorders in the working population of Germany: ultrasonography
screening in 96 278 unselected employees.
Thyroid.
2004;
14
926-932
- 2
Volzke H, Ludemann J, Robinson D M et al.
The prevalence of undiagnosed thyroid disorders in a previously iodine-deficient area.
Thyroid.
2003;
13
803-810
- 3 DeLellis R, Lloyd R V, Heitz H et al. World Health Organization classification of
tumors. Pathology and genetics of tumors of endocrine organs. Lyon: IARC Press; 2004
- 4
Hegedus L.
Clinical practice. The thyroid nodule.
N Engl J Med.
2004;
351
1764-1771
- 5
Belfiore A, La Rosa G L, Padova G et al.
The frequency of cold thyroid nodules and thyroid malignancies in patients from an
iodine-deficient area.
Cancer.
1987;
60
3096-3102
- 6
Gharib H, Papini E.
Thyroid nodules: clinical importance, assessment, and treatment.
Endocrinol Metab Clin North Am.
2007;
36
707-735, vi
- 7
Fagin J A.
Minireview: branded from the start-distinct oncogenic initiating events may determine
tumor fate in the thyroid.
Mol Endocrinol.
2002;
16
903-911
- 8
Krohn K, Wohlgemuth S, Gerber H et al.
Hot microscopic areas of iodine-deficient euthyroid goitres contain constitutively
activating TSH receptor mutations.
J Pathol.
2000;
192
37-42
- 9
Namba H, Matsuo K, Fagin J A.
Clonal composition of benign and malignant human thyroid tumors.
J Clin Invest.
1990;
86
120-125
- 10
Krohn K, Maier J, Paschke R.
Mechanisms of disease: Hydrogen peroxide, DNA damage and mutagenesis in the development
of thyroid tumors.
Nat Clin Pract Endocrinol Metab.
2007;
3
713-720
- 11
Hegedus L.
Clinical practice. The thyroid nodule.
N Engl J Med.
2004;
351
1764-1771
- 12
Parma J, Duprez L, Van Sande J et al.
Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid
adenomas.
Nature.
1993;
365
649-651
- 13
Kimura T, Van Keymeulen A, Golstein J et al.
Regulation of thyroid cell proliferation by TSH and other factors: A critical evaluation
of in vitro models.
Endocr Rev.
2001;
22
631-656
- 14
Lachmund P, Nebel I T, Fuhrer D et al.
The pedigree tool: web-based visualization of a family tree.
Hum Mutat.
2004;
23
103-105
- 15
Fuhrer D, Holzapfel H P, Wonerow P et al.
Constitutively activating mutations of the thyrotropin receptor and thyroid disease.
Eur J Med Res.
1996;
1
460-464
- 16
Parma J, Duprez L, Van Sande J et al.
Diversity and prevalence of somatic mutations in the thyrotropin receptor and Gs alpha
genes as a cause of toxic thyroid adenomas.
J Clin Endocrinol Metab.
1997;
82
2695-2701
- 17
Trulzsch B, Krohn K, Wonerow P et al.
Detection of thyroid-stimulating hormone receptor and Gsalpha mutations: in 75 toxic
thyroid nodules by denaturing gradient gel electrophoresis.
J Mol Med.
2001;
78
684-691
- 18
Krohn K, Fuhrer D, Bayer Y et al.
Molecular pathogenesis of euthyroid and toxic multinodular goiter.
Endocr Rev.
2005;
26
504-524
- 19
Krohn K, Fuhrer D, Holzapfel H P et al.
Clonal origin of toxic thyroid nodules with constitutively activating thyrotropin
receptor mutations.
J Clin Endocrinol Metab.
1998;
83
130-134
- 20
Fuhrer D, Paschke R.
[Mutations in TSH receptors: pathogenetic significance and clinical relevance].
Dtsch Med Wochenschr.
1999;
124
662-669
- 21
Ledent C, Parma J, Dumont J et al.
Molecular genetics of thyroid diseases.
Exp Cell Res.
1994;
130
8-14
- 22
Fuhrer D, Lewis M D, Alkhafaji F et al.
Biological activity of activating thyroid-stimulating hormone receptor mutants depends
on the cellular context.
Endocrinology.
2003;
144
4018-4030
- 23
Dohan O, Baloch Z, Banrevi Z et al.
RAPID COMMUNICATION: Predominant Intracellular Overexpression of the Na+ / I-Symporter
(NIS) in a Large Sampling of Thyroid Cancer Cases.
J Clin Endocrinol Metab.
2001;
86
2697-2700
- 24
Saito T, Endo T, Kawaguchi A et al.
Increased Expression of the Sodium / Iodide Symporter in Papillary Thyroid Carcinomas.
J Clin Invest.
1998;
101
1296-1300
- 25
Krause K, Karger S, Schierhorn A et al.
Proteomic profiling of cold thyroid nodules.
Endocrinology.
2007;
148
1754-1763
- 26
Venkateswaran A, Marsee D K, Green S H et al.
Forskolin, 8-Br-3′,5′-Cyclic Adenosine 5′-Monophosphate, and Catalytic Protein Kinase
A Expression in the Nucleus Increase Radioiodide Uptake and Sodium / Iodide Symporter
Protein Levels in RET / PTC1-Expressing Cells.
J Clin Endocrinol Metab.
2004;
89
6168-6172
- 27
Levy O, De l, Ginter C S et al.
N-linked glycosylation of the thyroid Na+ / I-symporter (NIS). Implications for its
secondary structure model.
J Biol Chem.
1998;
273
22657-22663
- 28
Gartner R, Dugrillon A, Bechtner G.
Evidence that thyroid growth autoregulation is mediated by an iodolactone.
Acta Med Austriaca.
1990;
17 Suppl 1
24-26
- 29
Dugrillon A, Bechtner G, Uedelhoven W M et al.
Evidence that an iodolactone mediates the inhibitory effect of iodide on thyroid cell
proliferation but not on adenosine 3′,5′-monophosphate formation.
Endocrinology.
1990;
127
337-343
- 30
Krohn K, Paschke R.
Loss of heterozygocity at the thyroid peroxidase gene locus in solitary cold thyroid
nodules.
Dtsch Med Wochenschr.
2001;
11
741-747
- 31
Krohn K, Reske A, Ackermann F et al.
Ras mutations are rare in solitary cold and toxic thyroid nodules.
Clin Endocrinol (Oxf).
2001;
55
241-248
- 32
Krohn K, Paschke R.
BRAF mutations are not an alternative explanation for the molecular etiology of ras-mutation
negative cold thyroid nodules.
Dtsch Med Wochenschr.
2004;
14
359-361
- 33
Vanvooren V, Allgeier A, Nguyen M et al.
Mutation analysis of the Epac – Rap1 signaling pathway in cold thyroid follicular
adenomas.
Exp Cell Res.
2001;
144
605-610
- 34
Holzer S, Reiners C, Mann K U.S. and German Thyroid Cancer Group et al.
Patterns of care for patients with primary differentiated carcinoma of the thyroid
gland treated in Germany during 1996.
Cancer.
2000;
89
192-201
- 35
Fusco A, Grieco M, Santoro M et al.
A new oncogene in human thyroid papillary carcinomas and their lymph-nodal metastases.
Nature.
1987;
328
170-172
- 36
Jhiang S M, Sagartz J E, Tong Q et al.
Targeted expression of the ret / PTC1 oncogene induces papillary thyroid carcinomas.
Endocrinology.
1996;
137
375-378
- 37
Nikiforova M N, Stringer J R, Blough R et al.
Proximity of chromosomal loci that participate in radiation-induced rearrangements
in human cells.
Science.
2000;
290
138-141
- 38
Caudill C M, Zhu Z, Ciampi R et al.
Dose-dependent generation of RET / PTC in human thyroid cells after in vitro exposure
to gamma-radiation: a model of carcinogenic chromosomal rearrangement induced by ionizing
radiation.
J Clin Endocrinol Metab.
2005;
90
2364-2369
- 39
Kimura E T, Nikiforova M N, Zhu Z et al.
High prevalence of BRAF mutations in thyroid cancer: genetic evidence for constitutive
activation of the RET / PTC-RAS-BRAF signaling pathway in papillary thyroid carcinoma.
Cancer Res.
2003;
63
1454-1457
- 40
Mitsutake N, Knauf J A, Mitsutake S et al.
Conditional BRAFV600E expression induces DNA synthesis, apoptosis, dedifferentiation,
and chromosomal instability in thyroid PCCL3 cells.
Cancer Res.
2005;
65
2465-2473
- 41
Fagin J A.
Challenging dogma in thyroid cancer molecular genetics – role of RET / PTC and BRAF
in tumor initiation.
J Clin Endocrinol Metab.
2004;
89
4264-4266
- 42
Nikiforova M N, Ciampi R, Salvator G et al.
Low prevalence of BRAF mutations in radiation-induced thyroid tumors in contrast to
sporadic papillary carcinomas.
Cancer Lett.
2004;
209
1-6
- 43
Ciampi R, Nikiforov Y E.
Alterations of the BRAF gene in thyroid tumors.
Endocr Pathol.
2005;
16
163-172
- 44
Lemoine N R, Mayall E S, Wyllie F S et al.
Activated ras oncogenes in human thyroid cancers.
Cancer Res.
1988;
48
4459-4463
- 45
Basolo F, Pisaturo F, Pollina L E et al.
N-ras mutation in poorly differentiated thyroid carcinomas: correlation with bone
metastases and inverse correlation to thyroglobulin expression.
Dtsch Med Wochenschr.
2000;
10
19-23
- 46
Suarez H G, du Villard J A, Severino M et al.
Presence of mutations in all three ras genes in human thyroid tumors.
Oncogene.
1990;
5
565-570
- 47
Motoi N, Sakamoto A, Yamochi T et al.
Role of ras mutation in the progression of thyroid carcinoma of follicular epithelial
origin.
Pathol Res Pract.
2000;
196
1-7
- 48
Esapa C T, Johnson S J, Kendall-Taylor P et al.
Prevalence of Ras mutations in thyroid neoplasia.
Clin Endocrinol (Oxf).
1999;
50
529-535
- 49
Kroll T G, Sarraf P, Pecciarini L et al.
PAX8-PPARgamma1 fusion oncogene in human thyroid carcinoma [corrected].
Science.
2000;
289
1357-1360
- 50
Nikiforova M N, Biddinger P W, Caudill C M et al.
PAX8-PPARgamma rearrangement in thyroid tumors: RT-PCR and immunohistochemical analyses.
Am J Surg Pathol.
2002;
26
1016-1023
- 51
Nikiforova M N, Lynch R A, Biddinger P W et al.
RAS point mutations and PAX8-PPAR gamma rearrangement in thyroid tumors: evidence
for distinct molecular pathways in thyroid follicular carcinoma.
J Clin Endocrinol Metab.
2003;
88
2318-2326
- 52
Halachmi N, Halachmi S, Evron E et al.
Somatic mutations of the PTEN tumor suppressor gene in sporadic follicular thyroid
tumors.
Genes Chromosomes Cancer.
1998;
23
239-243
- 53
Bruni P, Boccia A, Baldassarre G et al.
PTEN expression is reduced in a subset of sporadic thyroid carcinomas: evidence that
PTEN-growth suppressing activity in thyroid cancer cells mediated by p27kip1.
Oncogene.
2000;
19
3146-3155
- 54
Gimm O, Perren A, Weng L P et al.
Differential nuclear and cytoplasmic expression of PTEN in normal thyroid tissue,
and benign and malignant epithelial thyroid tumors.
Am J Pathol.
2000;
156
1693-1700
- 55
Ringel M D, Hayre N, Saito J et al.
Overexpression and overactivation of Akt in thyroid carcinoma.
Cancer Res.
2001;
61
6105-6111
- 56
Yeager N, Klein-Szanto A, Kimura S et al.
Pten loss in the mouse thyroid causes goiter and follicular adenomas: insights into
thyroid function and Cowden disease pathogenesis.
Cancer Res.
2007;
67
959-966
- 57
Vasko V, Saji M, Hardy E et al.
Akt activation and localisation correlate with tumour invasion and oncogene expression
in thyroid cancer.
J Med Genet.
2004;
41
161-170
- 58
Garcia-Rostan G, Costa A M, Pereira-Castro I et al.
Mutation of the PIK3CA gene in anaplastic thyroid cancer.
Cancer Res.
2005;
65
10199-10207
- 59
Wu G, Mambo E, Guo Z, Hu S et al.
Uncommon mutation, but common amplifications, of the PIK3CA gene in thyroid tumors.
J Clin Endocrinol Metab.
2005;
90
4688-4693
- 60
Hou P, Liu D, Shan Y et al.
Genetic alterations and their relationship in the phosphatidylinositol 3-kinase / Akt
pathway in thyroid cancer.
Clin Cancer Res.
2007;
13
1161-1170
- 61
Donghi R, Longoni A, Pilotti S et al.
Gene p53 mutations are restricted to poorly differentiated and undifferentiated carcinomas
of the thyroid gland.
J Clin Invest.
1993;
91
1753-1760
- 62
Fagin J A, Matsuo K, Karmakar A et al.
High prevalence of mutations of the p53 gene in poorly differentiated human thyroid
carcinomas.
J Clin Invest.
1993;
91
179-184
- 63
La Perle K M, Jhiang S M, Capen C C.
Loss of p53 promotes anaplasia and local invasion in ret / PTC1-induced thyroid carcinomas.
Am J Pathol.
2000;
157
671-677
- 64
Garcia-Rostan G, Camp R L, Herrero A et al.
Beta-catenin dysregulation in thyroid neoplasms: down-regulation, aberrant nuclear
expression, and CTNNB1 exon 3 mutations are markers for aggressive tumor phenotypes
and poor prognosis.
Am J Pathol.
2001;
158
987-996
- 65
Eszlinger M, Krohn K, Kukulska A et al.
Perspectives and Limitations of Microarray-Based Gene Expression Profiling of Thyroid
Tumors.
Endocr Rev.
2007;
- 66
Frattini M, Ferrario C, Bressan P et al.
Alternative mutations of BRAF, RET and NTRK1 are associated with similar but distinct
gene expression patterns in papillary thyroid cancer.
Oncogene.
2004;
23
7436-7440
- 67
Melillo R M, Castellone M D, Guarino V et al.
The RET / PTC-RAS-BRAF linear signaling cascade mediates the motile and mitogenic
phenotype of thyroid cancer cells.
J Clin Invest.
2005;
115
1068-1081
- 68
Aldred M A, Huang Y, Liyanarachchi S et al.
Papillary and follicular thyroid carcinomas show distinctly different microarray expression
profiles and can be distinguished by a minimum of five genes.
J Clin Oncol.
2004;
22
3531-3539
- 69
Jarzab B, Wiench M, Fujarewicz K et al.
Gene expression profile of papillary thyroid cancer: sources of variability and diagnostic
implications.
Cancer Res.
2005;
65
1587-1597
- 70
Giordano T J, Kuick R, Thomas D G et al.
Molecular classification of papillary thyroid carcinoma: distinct BRAF, RAS, and RET / PTC
mutation-specific gene expression profiles discovered by DNA microarray analysis.
Oncogene.
2005;
24
6646-6656
- 71
Lacroix L, Lazar V, Michiels S et al.
Follicular thyroid tumors with the PAX8-PPARgamma1 rearrangement display characteristic
genetic alterations.
Am J Pathol.
2005;
167
223-231
- 72
Lui W O, Foukakis T, Liden J et al.
Expression profiling reveals a distinct transcription signature in follicular thyroid
carcinomas with a PAX8-PPAR(gamma) fusion oncogene.
Oncogene.
2005;
24
1467-1476
- 73
Eszlinger M, Krohn K, Berger K et al.
Gene expression analysis reveals evidence for increased expression of cell cycle-associated
genes and Gq-protein-protein kinase C signaling in cold thyroid nodules.
J Clin Endocrinol Metab.
2005;
90
1163-1170
- 74
Eszlinger M, Krohn K, Frenzel R et al.
Gene expression analysis reveals evidence for inactivation of the TGF-beta signaling
cascade in autonomously functioning thyroid nodules.
Oncogene.
2004;
23
795-804
- 75
Cerutti J M, Delcelo R, Amadei M J et al.
A preoperative diagnostic test that distinguishes benign from malignant thyroid carcinoma
based on gene expression.
J Clin Invest.
2004;
113
1234-1242
- 76
Krause K, Eszlinger M, Gimm O et al.
TFF3-based candidate gene discrimination of benign and malignant thyroid tumors in
a region with borderline iodine deficiency.
J Clin Endocrinol Metab.
2008;
93
1390-1393
- 77
Weber F, Shen L, Aldred M A et al.
Genetic classification of benign and malignant thyroid follicular neoplasia based
on a three-gene combination.
J Clin Endocrinol Metab.
2005;
90
2512-2521
- 78
Brown L M, Helmke S M, Hunsucker S W et al.
Quantitative and qualitative differences in protein expression between papillary thyroid
carcinoma and normal thyroid tissue.
Mol Carcinog.
2006;
45
613-626
- 79
Krause K, Karger S, Sheu S Y et al.
Evidence for a role of the amyloid precursor protein in thyroid carcinogenesis.
J Endocrinol.
2008;
Prof. Dr. D. Führer
Medizinische Klinik III · Universität Leipzig
Philipp-Rosenthal-Str. 27
04103 Leipzig
Phone: +49 / 3 41 / 9 71 33 01
Fax: +49 / 3 41 / 9 71 33 89
Email: fued@medizin.uni-leipzig.de