Endoscopy 2008; 40(11): 888-891
DOI: 10.1055/s-2008-1077718
Original article

© Georg Thieme Verlag KG Stuttgart · New York

Confocal laser scanning fluorescence microscopy for in vivo determination of microvessel density in Barrett’s esophagus

V.  Becker1 , M.  Vieth2 , M.  Bajbouj1 , R.  M.  Schmid1 , A.  Meining1
  • 1Department of Medicine II, Technical University of Munich, Munich, Germany
  • 2Institute of Pathology, Klinikum Bayreuth, Germany
Weitere Informationen

Publikationsverlauf

submitted 8 May 2008

accepted after revision 23 September 2008

Publikationsdatum:
13. November 2008 (online)

Background and study aims: Angiogenesis has been reported to be an essential step in the progression of cancers arising from Barrett’s esophagus. Confocal laser scanning microscopy (CLM) has the potential to perform in vivo microscopy to detect angiogenesis and determine microvessel density (MVD). We aimed therefore to use this new promising imaging tool for the evaluation of MVD in Barrett’s esophagus and associated neoplasia.

Patients and methods: We enrolled 20 patients with Barrett’s esophagus. CLM sequences were recorded from pre-marked areas using argon beamer coagulation spots after intravenous application of fluorescein. Sequences had to be recorded within the first 8 minutes of injection. Biopsies were taken from the same areas for standard histopathology. All CLM sequences were put into a random order and analyzed by a single investigator who was blinded to any clinical or histopathological data. Five still images per sequence were analyzed for MVD using a specially designed software algorithm. The primary endpoint was determination of vessel diameter and MVD in relation to neoplastic or non-neoplastic Barrett’s esophagus.

Results: We evaluated 750 still CLM images from 150 sequences/biopsy sites. Histopathology revealed 69 biopsies as non-neoplastic Barrett’s esophagus (46.0 %), 11 as neoplastic Barrett’s esophagus (7.3 %), 64 as cardiac mucosa (42.7 %), and six as squamous mucosa (4.0 %). Mean vessel diameter as determined by CLM was similar in all four groups (P = 0.2). However, MVD was significantly higher in CLM sequences of neoplastic Barrett’s esophagus compared with benign conditions (neoplastic Barrett’s esophagus 23.6 %; Barrett’s esophagus 14.2 %; cardiac mucosa 15.8 %; squamous epithelium 20.6 %; neoplastic Barrett’s esophagus vs. Barrett’s esophagus P < 0.001, t-test).

Conclusion: Fibered fluorescein-guided CLM helps to detect angiogenesis in malignant and non-malignant Barrett’s esophagus in vivo. These data might help to improve the diagnostic yield of detecting Barrett’s neoplasia but also to facilitate monitoring of antiangiogenetic therapy.

References

  • 1 Bytzer P, Christensen P B, Damkier P. et al . Adenocarcinoma of the esophagus and Barrett’s esophagus: a population-based study.  Am J Gastroenterol. 1999;  94 86-91
  • 2 Devesa S S, Blot W J, Fraumeni jr J F. Changing patterns in the incidence of esophageal and gastric carcinoma in the United States.  Cancer. 1998;  83 2049-2053
  • 3 Souza R F, Shewmake K, Pearson S. et al . Acid increases proliferation via ERK and p38 MAPK-mediated increases in cyclooxygenase-2 in Barrett’s adenocarcinoma cells.  Am J Physiol. 2004;  287 G743-G748
  • 4 Sommerer F, Vieth M, Markwarth A. et al . Mutations of BRAF and KRAS2 in the development of Barrett’s adenocarcinoma.  Oncogene. 2004;  23 554-558
  • 5 Maley C C, Galipeau P C, Li X. et al . Advantageous mutations and hitchhikers in neoplasms: p16 lesions are selected in Barrett’s esophagus.  Cancer Res. 2004;  64 3414-3427
  • 6 Möbius C, Stein H J, Becker I. et al . Vascular endothelial growth factor expression and neovascularization in Barrett’s carcinoma.  World J Surg. 2004;  28 675-679
  • 7 Kumar S, Ghellal A, Cheng L. et al . Breast carcinoma: vascular density determined using CD105 antibody correlates with tumour prognosis.  Cancer Res. 1999;  59 856-861
  • 8 Couvelard A, Paraf F, Gratio V. et al . Angiogenesis in the neoplastic sequence of Barrett’s esophagus: correlation with VEGF expression.  J Pathol. 2000;  192 14-18
  • 9 Auvinen M I, Sihvo E IT, Ruohtula T. et al . Incipient angiogenesis in Barrett’s epithelium and lymphangiogenesis in Barrett’s adenocarcinoma.  J Clin Oncol. 2002;  20 2971-2979
  • 10 Kiesslich R, Gossner L, Goetz M. et al . In vivo histology of Barretts esophagus and associated neoplasia by confocal laser endomicroscopy.  Clin Gastroenterol Hepatol. 2006;  4 979-987
  • 11 Meining A, Saur D, Bajbouj M. et al . In vivo histopathology for detection of gastrointestinal neoplasia with a portable, confocal miniprobe: an examiner blinded analysis.  Clin Gastroenterol Hepatol. 2007;  5 1261-1267
  • 12 Becker V, Vercauteren T, von Weyhern C H. et al . High-resolution miniprobe-based confocal microscopy in combination with video mosaicing (with video).  Gastrointest Endosc. 2007;  66 1001-1007
  • 13 Becker V, Delius S, Bajbouj M. et al . Intravenous application of fluorescein for confocal laser scanning microscopy: evaluation of contrast dynamics and image quality with increasing injection-to-imaging time.  Gastrointest Endosc. 2008;  68 319-323
  • 14 Meining A, Ott R, Becker I. et al . The Munich Barrett follow up study: suspicion of Barrett’s oesophagus based on either endoscopy or histology only – what is the clinical significance?.  Gut. 2004;  53 1402-1407
  • 15 Kara M A, Peters F P, Rosmolen W D. et al . High-resolution endoscopy plus chromoendoscopy or narrow-band imaging in Barrett’s esophagus: a prospective randomized crossover study.  Endoscopy. 2005;  37 929-936
  • 16 Sharma S, Sharma M C, Sarkar C. Morphology of angiogenesis in human cancer: a conceptual overview, histoprognostic perspective and significance of neoangiogenesis.  Histopathology. 2005;  46 481-489
  • 17 Zhao H C, Qin R, Chen X X. et al . Microvessel density is a prognostic marker of human gastric cancer.  World J Gastroenterol. 2006;  12 7598-7603
  • 18 Couvelard A, Paraf F, Gratio V. et al . Angiogenesis in the neoplastic sequence of Barrett’s esophagus. Correlation with VEGF expression.  J Pathol. 2000;  192 14-18
  • 19 Torres C, Wang H, Turner J. et al . Prognostic significance and effect of chemoradiotherapy on microvessel density (angiogenesis) in esophageal Barrett’s esophagus-associated adenocarcinoma and squamous cell carcinoma.  Hum Pathol. 1999;  30 753-758
  • 20 Shah M A, Ramanathan R K, Ilson D H. et al . Multicenter phase II study of irinotecan, cisplatin, and bevacizumab in patients with metastatic gastric or gastroesophageal junction adenocarcinoma.  J Clin Oncol. 2006;  24 5201-5206
  • 21 Makari Y, Yasuda T, Doki Y. et al . Correlation between tumor blood flow assessed by perfusion CT and effect of neoadjuvant therapy in advanced esophageal cancers.  J Surg Oncol. 2007;  96 220-229
  • 22 Phongkitkarun S, Kobayashi S, Kan Z. et al . Quantification of angiogenesis by functional computed tomography in a Matrigel model in rats.  Acad Radiol. 2004;  11 573-582

A. MeiningMD 

II. Medizinische Klinik der TU München
Klinikum rechts der Isar

Ismaningerstr. 22
D-81675 Munich
Germany

Fax: +49-89-41404905

eMail: alexander.meining@lrz.tum.de