Subscribe to RSS
DOI: 10.1055/s-2008-1077885
Total Synthesis of Amphidinolide X and Its 12Z-Isomer by Formation of the C12-C13 Trisubstituted Double Bond via Ring-Closing Metathesis
Publication History
Publication Date:
11 June 2008 (online)
Abstract
Amphidinolide X, a 16-membered cytotoxic macrodiolide, and its 12Z-isomer have been synthesized via ring-closing metathesis (RCM) for assembling the C12-C13 trisubstituted double bond. A 29:71 E/Z mixture was obtained from the seco substrate appended with a bulky C8-ODPS group in 50-65% combined yields by using 20 mol% of the second-generation Grubbs initiator and the corresponding indenylidene ruthenium complex. Amphidinolide X and 12Z-isomer exhibit similar cytotoxicity (IC50: 7.6-13.9 µg/mL) against A549, KB, and HL60 cell lines.
Key words
anti-selective aldehyde crotylation - macrodiolide - ring-closing metathesis - microwave - trisubstituted olefin
- 1
Tsuda M.Izui N.Shimbo K.Sato M.Fukushi E.Kawabata J.Katsumata K.Horiguchi T.Kobayashi J.
J. Org. Chem. 2003, 68: 5339 -
2a
Kobayashi J.Tsuda M. Nat. Prod. Rep. 2004, 21: 77 -
2b
Kobayashi J.Kubata M. J. Nat. Prod. 2007, 70: 451 - 3
Tsuda M.Izui N.Shimbo K.Sato M.Fukushi E.Kawabata J.Kobayashi J. J. Org. Chem. 2003, 68: 9109 - For the first total syntheses of amphidinolide X and Y, see:
-
4a
Lepage O.Kattnig E.Fürstner A. J. Am. Chem. Soc. 2004, 126: 15970 -
4b
Fürstner A.Kattnig E.Lepage O. J. Am. Chem. Soc. 2006, 128: 9194 - 5 For a review, see:
Parenty A.Moreau X.Campagne J.-M. Chem. Rev. 2006, 106: 911 - For reviews, see:
-
6a
Grubbs RH.Chang S. Tetrahedron 1998, 54: 4413 -
6b
Fürstner A. Angew. Chem. Int. Ed. 2000, 39: 3012 -
6c
Trnka TM.Grubbs RH. Acc. Chem. Res. 2001, 34: 18 -
6d
Schrock RR.Hoveyda AH. Angew. Chem. Int. Ed. 2003, 42: 4592 -
6e
Deiters A.Martin SF. Chem. Rev. 2004, 104: 2199 -
6f
Grubbs RH. Tetrahedron 2004, 60: 7117 -
6g
Nicolaou KC.Bulger PG.Sarlah D. Angew. Chem. Int. Ed. 2005, 44: 4490 -
6h
Gradillas A.Pérez-Castells J. Angew. Chem. Int. Ed. 2006, 45: 6086 -
6i
Schrodi Y.Pederson RL. Aldrichimica Acta 2007, 40: 45 -
6j
Hoveyda AH.Zhugralin AR. Nature (London) 2007, 450: 243 -
6k See also:
Handbook of Metathesis
Vol. 1-3:
Grubbs RH. Wiley-VCH; Weinheim: 2003. - 7 For the second total synthesis of amphidinolide Y, see:
Jin J.Chen Y.Li Y.Wu J.Dai W.-M. Org. Lett. 2007, 9: 2585 - For Ru-mediated RCM to macrocyclic trisubstituted E-alkenes, see:
-
8a
Fürstner A.Thiel OR.Ackermann L. Org. Lett. 2001, 3: 449 -
8b
Nicolaou KC.Vassilikogiannakis G.Montagnon T. Angew. Chem. Int. Ed. 2002, 41: 3276 -
8c
Nicolaou KC.Montagnon T.Vassilikogiannakis G.Mathison CJN. J. Am. Chem. Soc. 2005, 127: 8872 -
8d
Ichige T.Kamimura S.Mayumi K.Sakamoto Y.Terashita S.Ohteki E.Kanoh N.Nakata M. Tetrahedron Lett. 2005, 46: 1263 -
8e
Alexander MD.Fontaine SD.La Clair JJ.DiPasquale AG.Rheingold AL.Burkart MD. Chem. Commun. 2006, 4602 -
8f
Trost BM.Dong G.Vance JA. J. Am. Chem. Soc. 2007, 129: 4540 -
8g
Feyen F.Jantsch A.Altmann K.-H. Synlett 2007, 415 -
8h For Ru-mediated RCM to macrocyclic trisubstituted Z-alkenes or E/Z mixtures, see:
Vassilikogiannakis G.Margaros I.Tofi M. Org. Lett. 2004, 6: 205 -
8i
Nicolaou KC.Xu H. Chem. Commun. 2006, 600 -
8j
Park PK.O’Malley SJ.Schmidt DR.Leighton JL. J. Am. Chem. Soc. 2006, 128: 2796 -
8k
Smith AB.Mesaros EF.Meyer EA. J. Am. Chem. Soc. 2006, 128: 5292 -
8l
Larrosa I.Da Silva MI.Gómez PM.Hannen P.Ko E.Lenger SR.Linke SR.White AJP.Wilton D.Barrett AGM. J. Am. Chem. Soc. 2006, 128: 14042 -
8m
Alhamadsheh MM.Gupta S.Hudson RA.Perera L.Tillekeratne LMV. Chem. Eur. J. 2008, 14: 570 -
8n For Mo-mediated RCM to macrocyclic trisubstituted Z-alkenes or E/Z mixtures, see:
Xu Z.Johannes CW.Houri AF.La DS.Cogan DA.Hofilena GE.Hoveyda AH. J. Am. Chem. Soc. 1997, 119: 10302 ; and references cited therein -
8o
May SA.Grieco PA. Chem. Commun. 1998, 1597 -
8p
Content S.Dutton CJ.Roberts L. Bioorg. Med. Chem. Lett. 2003, 13: 321 -
9a
Chen Y.Jin J.Wu J.Dai W.-M. Synlett 2006, 1177 -
9b For an alternative synthesis, see:
Rodríguez-Escrich C.Olivella A.Urpí F.Vilarrasa J. Org. Lett. 2007, 9: 989 -
10a
Brown HC.Bhat K. J. Am. Chem. Soc. 1986, 108: 293 -
10b
Roush WR.Halterman RL. J. Am. Chem. Soc. 1986, 108: 294 -
10c
Roush WR.Ando K.Powers DB.Palkowitz AD.Halterman RL. J. Am. Chem. Soc. 1990, 112: 6339 -
10d
Benowitz AB.Fidanze S.Small PLC.Kishi Y. J. Am. Chem. Soc. 2001, 123: 5128 - 11
Hackman BM.Lombardi PJ.Leighton JL. Org. Lett. 2004, 6: 4375 - 12
Garbaccio RM.Stachel SJ.Baeschlin DK.Danishefsky SJ. J. Am. Chem. Soc. 2001, 123: 10903 -
14a
Heckrodt TJ.Mulzer J. Synthesis 2002, 1857 -
14b
Bailey WF.Punzalan ER. J. Org. Chem. 1990, 55: 5404 - 15
Inanaga J.Hirata K.Saeki H.Katsuki T.Yamaguchi M. Bull. Chem. Soc. Jpn. 1979, 52: 1989 -
16a
McMurry JE.Wong GB. Synth. Commun. 1972, 2: 389 ; and references cited therein -
16b For microwave-assisted cleavage of aromatic methyl esters, see:
Sheppard GS.Wang J.Kawai M.Fidanze SD.BaMaung NY.Erickson SA.Barnes DM.Tedrow JS.Kolaczkowski L.Vasudevan A.Park DC.Wang GT.Sanders WJ.Mantei RA.Palazzo F.Tucker-Garcia L.Lou P.Zhang Q.Park CH.Kim KH.Petros A.Olejniczak E.Nettesheim D.Hajduk P.Henkin J.Lesniewski R.Davidsen SK.Bell RL. J. Med. Chem. 2006, 49: 3832 -
17a
Fürstner A.Langemann K. J. Am. Chem. Soc. 1997, 119: 9130 -
17b
Nevalainen M.Koskinen AMP. Angew. Chem. Int. Ed. 2001, 40: 4060 -
18a
Jafarpour L.Schanz H.-J.Stevens ED.Nolan SP. Organometallics 1999, 18: 5416 -
18b
Fürstner A.Hill AF.Liebl M.Wilton-Ely JDET. Chem. Commun. 1999, 601 -
18c For use of an analogous indenylidene ruthenium complex of 24 in the synthesis of the ADE-ring system of Nakadomarin A, see:
Fürstner A.Guth O.Düffels A.Seidel G.Liebl M.Gabor B.Mynott R. Chem. Eur. J. 2001, 7: 4811 -
18d For recent studies on comprehensive comparison of RCM initiators, see:
Clavier H.Nolan SP. Chem Eur. J. 2007, 13: 8029 -
18e
Bieniek M.Michrowska A.Usanov DL.Grela K. Chem. Eur. J. 2008, 14: 806 - Remote control of alkene geometry by endocyclic groups in ring-closing metathesis has been reported. For examples of formation of disubstituted macrocyclic alkenes, see:
-
21a
Meng D.Su D.-S.Balog A.Bertinato P.Sorensen EJ.Danishefsky SJ.Zheng Y.-H.Chou T.-C.He L.Horwitz SB. J. Am. Chem. Soc. 1997, 119: 2733 -
21b
Fürstner A.Thiel OR.Blanda G. Org. Lett. 2000, 2: 3731 -
21c
Fürstner A.Dierkes T.Thiel OR.Blanda G. Chem. Eur. J. 2001, 7: 5286 -
21d
Aïssa C.Riveiros R.Ragot J.Fürstner A. J. Am. Chem. Soc. 2003, 125: 15512 -
21e
Couladouros EA.Mihou AP.Bouzas EA. Org. Lett. 2004, 6: 977 -
21f
Castoldi D.Caggiano L.Panigada L.Sharon O.Costa AM.Gennari C. Angew. Chem. Int. Ed. 2005, 44: 588 -
21g
Matsumura T.Akiba M.Arai S.Nakagawa M.Nishida A. Tetrahedron Lett. 2007, 48: 1265 -
21h
Mohapatra DK.Ramesh DK.Giardello MA.Chorghade MS.Gurjara MK.Grubbs RH. Tetrahedron Lett. 2007, 48: 2621 -
21i For examples of formation of trisubstituted macrocyclic alkenes, see:
Meng D.Bertinato P.Balog A.Su D.-S.Kamenecka T.Sorensen EJ.Danishefsky SJ. J. Am. Chem. Soc. 1997, 119: 10073 -
21j
Nicolaou KC.Vassilikogiannakis G.Montagnon T. Angew. Chem. Int. Ed. 2002, 41: 3276 -
21k
Nicolaou KC.Montagnon T.Vassilikogiannakis G.Mathison CJN. J. Am. Chem. Soc. 2005, 127: 8872 -
21l
Vassilikogiannakis G.Margaros I.Tofi M. Org. Lett. 2004, 6: 205 -
21m
Alhamadsheh MM.Gupta S.Hudson RA.Perera L.Tillekeratne LMV. Chem. Eur. J. 2008, 14: 570 -
21n
Trost BM.Dong G.Vance JA. J. Am. Chem. Soc. 2007, 129: 4540 -
21o
Ramírez-Fernández J.Collado IG.Hernández-Galán R. Synlett 2008, 339 ; see also ref. 7
References and Notes
We used noncrystallized form of the reagent. An 85:15 mixture of (S,S)-9 and its Z-isomer was prepared from an 85:15 mixture of E- and Z-crotyl chloride obtained from Aldrich according to the literature procedure (ref. 11). The Z-isomer of (S,S)-9 reacted with (R)-8 to produce a syn-homoallyl alcohol which is different from 3′. The diaste-
reomeric ratio of >99:1 was estimated according to the 1H NMR spectrum of the product mixture.
Procedure for Synthesis of (12 Z )-Amphidinolide X via Ring-Closing Metathesis of the seco Ketone 19 Using Second-Generation Grubbs Initiator 23 To a degassed, refluxing solution of the seco ketone 19 (30.0 mg, 6.3×10-2 mmol) in anhyd CH2Cl2 (100 mL) under a nitrogen atmosphere was added the second-generation Grubbs initiator 23 (2.7 mg, 0.3×10-2 mmol). The resulting clear, pale pink solution changed to a clear yellow color after refluxing for 24 h. Three additional portions of 23 (2.7 mg, 0.3×10-2 mmol; a total of 1.2×10-2 mmol) were added after 24, 48, and 72 h, respectively. After refluxing for a total of 4 d, the reaction mixture was concentrated to <1 mL on a rotary evaporator, and the remaining mixture was purified directly by flash column chromatography over SiO2 [eluting with 3% EtOAc in PE (bp 60-90 °C)] to give (12Z)-amphidinolide X [(12Z)-1, 24.0 mg, 85%]. (12Z)-Amphidinolide X [(12Z)-1]: colorless oil; [α]D 17 -16.0 (c 1.00, CHCl3). IR (film): 2964, 1731, 1655, 1454, 1377, 1315, 1269, 1215, 1167, 1049 cm-1. 1H NMR (400 MHz, CDCl3): δ = 6.92 (dd, J = 16.0, 6.4 Hz, 1 H), 5.81 (dd, J = 16.0, 1.6 Hz, 1 H), 5.18 (dt, J = 8.8, 4.0 Hz, 1 H), 4.88 (d, J = 10.4 Hz, 1 H), 4.82 (dt, J = 8.8, 7.2 Hz, 1 H), 3.74 (ddd, J = 10.0, 7.6, 2.8 Hz, 1 H), 2.96-2.89 (m, 1 H), 2.85-2.80 (m, 1 H), 2.66-2.58 (m, 2 H), 2.53 (dd, J = 14.8, 4.8 Hz, 1 H), 2.42-2.33 (m, 2 H), 2.26-2.19 (m, 1 H), 2.16 (s, 3 H), 1.89-1.82 (m, 2 H), 1.70 (s, 3 H), 1.64 (dd, J = 13.2, 7.2 Hz, 1 H), 1.49-1.47 (m, 2 H), 1.36-1.30 (m, 2 H), 1.26 (s, 3 H), 1.15 (d, J = 7.6 Hz, 3 H), 1.05 (d, J = 6.8 Hz, 3 H), 0.91 (t, J = 7.6 Hz, 3 H). 13C NMR (125 MHz, CDCl3): δ = 206.4, 171.3, 166.0, 151.7, 137.3, 126.3, 120.0, 81.9, 79.5, 78.0, 72.8, 44.8, 43.8, 43.1, 40.0, 35.9, 33.9, 31.4, 30.1, 27.3, 26.7, 23.5, 19.6, 17.8, 14.7, 14.6. MS (+ESI): m/z (rel. int.) = 471 (100) [M + Na+]. HRMS (+ESI): m/z calcd for C26H40O6Na+ [M + Na+], 471.2717; found: 471.2719.
20
Procedure for the Synthesis of Amphidinolide X via Ring-Closing Metathesis of 17 Using Second-Generation Grubbs Initiator 23 as the Key Step
To a degassed, refluxing solution of 17 (150.0 mg, 0.21 mmol) in anhyd CH2Cl2 (150 mL) under a nitrogen atmosphere was added the second-generation Grubbs initiator 23 (8.9 mg, 1.1×10-2 mmol). The resulting clear, pale pink solution changed to a clear yellow color after refluxing for 24 h. Three additional portions of 23 (8.9 mg, 1.1×10-2 mmol; a total of 4.4×10-2 mmol) were added after 24, 48, and 72 h, respectively. After refluxing for a total of 6 d, the reaction mixture was concentrated to <1 mL on a rotary evaporator and the remaining mixture was purified directly by flash column chromatography over SiO2 [eluting with 3% EtOAc in PE (bp 60-90 °C)] to give a 71:29 mixture of the Z and E RCM products 20 and 21 (70.0 mg, 50%) as a colorless oil. The Z/E ratio was determined by the integration of the corresponding signals in the 1H NMR spectrum. An pure sample of isomer 20 was obtained by flash column chromatography [eluting with 3% EtOAc in PE (bp 60-90 °C)] of the product mixture.
Compound 20: colorless oil; [α]D
17 -35.9 (c 2.0, CHCl3).
IR (film): 2929, 1733, 1653, 1456, 1428, 1379, 1268, 1167, 1112, 1086 cm-1. 1H NMR (400 MHz, CDCl3): δ = 7.68-7.65 (m, 4 H), 7.42-7.32 (m, 6 H), 6.93 (dd, J = 16.0, 6.0 Hz, 1 H), 5.75 (dd, J = 16.0, 1.6 Hz, 1 H), 5.02-5.00 (m, 1 H), 4.86 (d, J = 10.8 Hz, 1 H), 4.78 (dt, J = 8.4, 7.2 Hz, 1 H), 3.82-3.78 (m, 1 H), 3.74-3.70 (m, 1 H), 2.97-2.89 (m, 1 H), 2.74-2.67 (m, 1 H), 2.43-2.36 (m, 2 H), 2.30-2.22 (m, 2 H), 1.91-1.71 (m, 4 H), 1.67 (s, 3 H), 1.64-1.61 (m, 2 H), 1.48-1.44 (m, 2 H), 1.36-1.30 (m, 2 H), 1.25 (s, 3 H), 1.14 (d, J = 6.8 Hz, 3 H), 1.02 (d, J = 6.0 Hz, 3 H), 1.00 (s, 9 H), 0.96 (d, J = 7.2 Hz, 3 H), 0.91 (t, J = 7.2 Hz, 3 H). 13C NMR (125 MHz, CDCl3): δ = 171.3, 166.2, 151.8, 136.3 (2), 136.1 (2), 135.7, 135.3, 134.2, 129.7, 129.6, 127.7 (2), 127.6 (2), 127.4, 119.9, 81.7, 79.8, 77.8, 74.3, 67.6, 44.8, 44.0, 40.1, 38.5, 36.1, 33.4, 31.3, 27.2 (3), 27.1, 26.8, 24.2, 23.3, 19.5, 19.3, 17.9, 14.8, 14.4. MS (+ESI): m/z (rel. int.) = 711 (100) [M + Na+]. HRMS (+ESI): m/z calcd for C42H60O6SiNa+ [M + Na+], 711.4051; found: 711.4054.
A plastic tube was charged with the 71:29 mixture of 20 and 21 (50.0 mg) in THF (2 mL) followed by adding 70% hydrogen fluoride pyridine (2 mL) at r.t. The resultant mixture was stirred for 24 h at r.t. and the reaction was quenched carefully with sat. aq Na2CO3. The reaction mixture was extracted with Et2O and the combined organic layer was dried over anhyd Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography over SiO2 [eluting with 20% EtOAc in PE (bp 60-90 °C)] to give a mixture of the alcohol (34.0 mg, 75%) as a colorless oil. The structure of the alcohol was confirmed by mass spectrometry data. MS (+ESI): m/z (rel. int.) = 473 (100) [M + Na+]. HRMS (+ESI): m/z calcd for C26H42O6Na+ [M + Na+]: 473.2874; found: 473.2880.
To a solution of the above mixture (34.0 mg, 7.5×10-2 mmol) in CH2Cl2 (1 mL) at r.t. was added NaHCO3 (19 mg, 0.225 mmol) followed by carefully adding a solution of Dess-Martin periodinane in CH2Cl2 (0.3 M, 0.5 mL, 0.15 mmol). The resultant mixture was stirred at r.t. for 4 h followed by treating with sat. aq Na2S2O3. The reaction mixture was extracted with CH2Cl2. The organic layer was washed with brine, dried over anhyd Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography over SiO2 [eluting with 15% EtOAc in PE (bp 60-90 °C)] to give amphidinolide X (1, 8.0 mg, 23%) and (12Z)-amphidinolide X [(12Z)-1, 21.0 mg, 62%].
Amphidinolide X (1): colorless oil; [α]D
17 -26.8 (c 1.00, CHCl3). IR (film): 2963, 1717, 1654, 1453, 1377, 1265, 1186, 1039 cm-1. 1H NMR (500 MHz, CDCl3): δ = 7.12 (dd, J = 15.8, 7.2 Hz, 1 H), 5.79 (dd, J = 15.8, 1.6 Hz, 1 H), 5.20 (m, 2 H), 4.95 (d, J = 10.3 Hz, 1 H), 3.96 (dt, J = 11.2, 3.6 Hz, 1 H), 2.78 (m, 1 H), 2.69 (dd, J = 16.6, 6.1 Hz, 1 H), 2.69 (m, 1 H), 2.58 (dd, J = 13.6, 3.9 Hz, 1 H), 2.58 (dd, J = 16.5, 7.5 Hz, 1 H), 2.41 (dd, J = 13.3, 6.3 Hz, 1 H), 2.18 (m, 1 H), 2.17 (m, 1 H), 2.14 (s, 3 H), 2.12 (m, 1 H), 1.94 (tt, J = 13.5, 3.3 Hz, 1 H), 1.75 (dd, J = 13.9, 2.4 Hz, 1 H), 1.55 (s, 3 H), 1.54 (m, 1 H), 1.50 (m, 2 H), 1.35 (m, 2 H), 1.30 (s, 3 H), 1.14 (d, J = 6.9 Hz, 3 H), 0.92 (t, J = 7.5 Hz, 3 H), 0.91 (d, J = 7.1 Hz, 3 H). 13C NMR (125 MHz, CDCl3): δ = 205.5, 170.7, 165.8, 153.2, 135.6, 126.1, 120.3, 83.0, 80.6, 78.5, 74.3, 47.2, 44.3, 43.6, 41.5, 35.6, 35.4, 33.1, 30.5, 30.5, 24.7, 18.2, 17.9, 17.6, 15.5, 14.7. MS (+ESI): m/z (rel. int.) = 471 (100) [M + Na+]. HRMS (+ESI): m/z calcd for C26H40O6Na+ [M + Na+]: 471.2717; found: 471.2699.