References and Notes
1
Tsuda M.
Izui N.
Shimbo K.
Sato M.
Fukushi E.
Kawabata J.
Katsumata K.
Horiguchi T.
Kobayashi J.
J. Org. Chem.
2003,
68:
5339
2a
Kobayashi J.
Tsuda M.
Nat. Prod. Rep.
2004,
21:
77
2b
Kobayashi J.
Kubata M.
J. Nat. Prod.
2007,
70:
451
3
Tsuda M.
Izui N.
Shimbo K.
Sato M.
Fukushi E.
Kawabata J.
Kobayashi J.
J. Org. Chem.
2003,
68:
9109
For the first total syntheses of amphidinolide X and Y, see:
4a
Lepage O.
Kattnig E.
Fürstner A.
J. Am. Chem. Soc.
2004,
126:
15970
4b
Fürstner A.
Kattnig E.
Lepage O.
J. Am. Chem. Soc.
2006,
128:
9194
5 For a review, see: Parenty A.
Moreau X.
Campagne J.-M.
Chem. Rev.
2006,
106:
911
For reviews, see:
6a
Grubbs RH.
Chang S.
Tetrahedron
1998,
54:
4413
6b
Fürstner A.
Angew. Chem. Int. Ed.
2000,
39:
3012
6c
Trnka TM.
Grubbs RH.
Acc. Chem. Res.
2001,
34:
18
6d
Schrock RR.
Hoveyda AH.
Angew. Chem. Int. Ed.
2003,
42:
4592
6e
Deiters A.
Martin SF.
Chem. Rev.
2004,
104:
2199
6f
Grubbs RH.
Tetrahedron
2004,
60:
7117
6g
Nicolaou KC.
Bulger PG.
Sarlah D.
Angew. Chem. Int. Ed.
2005,
44:
4490
6h
Gradillas A.
Pérez-Castells J.
Angew. Chem. Int. Ed.
2006,
45:
6086
6i
Schrodi Y.
Pederson RL.
Aldrichimica Acta
2007,
40:
45
6j
Hoveyda AH.
Zhugralin AR.
Nature (London)
2007,
450:
243
6k See also:
Handbook of Metathesis
Vol. 1-3:
Grubbs RH.
Wiley-VCH;
Weinheim:
2003.
7 For the second total synthesis of amphidinolide Y, see: Jin J.
Chen Y.
Li Y.
Wu J.
Dai W.-M.
Org. Lett.
2007,
9:
2585
For Ru-mediated RCM to macrocyclic trisubstituted E-alkenes, see:
8a
Fürstner A.
Thiel OR.
Ackermann L.
Org. Lett.
2001,
3:
449
8b
Nicolaou KC.
Vassilikogiannakis G.
Montagnon T.
Angew. Chem. Int. Ed.
2002,
41:
3276
8c
Nicolaou KC.
Montagnon T.
Vassilikogiannakis G.
Mathison CJN.
J. Am. Chem. Soc.
2005,
127:
8872
8d
Ichige T.
Kamimura S.
Mayumi K.
Sakamoto Y.
Terashita S.
Ohteki E.
Kanoh N.
Nakata M.
Tetrahedron Lett.
2005,
46:
1263
8e
Alexander MD.
Fontaine SD.
La Clair JJ.
DiPasquale AG.
Rheingold AL.
Burkart MD.
Chem. Commun.
2006,
4602
8f
Trost BM.
Dong G.
Vance JA.
J. Am. Chem. Soc.
2007,
129:
4540
8g
Feyen F.
Jantsch A.
Altmann K.-H.
Synlett
2007,
415
8h For Ru-mediated RCM to macrocyclic trisubstituted Z-alkenes or E/Z mixtures, see: Vassilikogiannakis G.
Margaros I.
Tofi M.
Org. Lett.
2004,
6:
205
8i
Nicolaou KC.
Xu H.
Chem. Commun.
2006,
600
8j
Park PK.
O’Malley SJ.
Schmidt DR.
Leighton JL.
J. Am. Chem. Soc.
2006,
128:
2796
8k
Smith AB.
Mesaros EF.
Meyer EA.
J. Am. Chem. Soc.
2006,
128:
5292
8l
Larrosa I.
Da Silva MI.
Gómez PM.
Hannen P.
Ko E.
Lenger SR.
Linke SR.
White AJP.
Wilton D.
Barrett AGM.
J. Am. Chem. Soc.
2006,
128:
14042
8m
Alhamadsheh MM.
Gupta S.
Hudson RA.
Perera L.
Tillekeratne LMV.
Chem. Eur. J.
2008,
14:
570
8n For Mo-mediated RCM to macrocyclic trisubstituted Z-alkenes or E/Z mixtures, see: Xu Z.
Johannes CW.
Houri AF.
La DS.
Cogan DA.
Hofilena GE.
Hoveyda AH.
J. Am. Chem. Soc.
1997,
119:
10302 ; and references cited therein
8o
May SA.
Grieco PA.
Chem. Commun.
1998,
1597
8p
Content S.
Dutton CJ.
Roberts L.
Bioorg. Med. Chem. Lett.
2003,
13:
321
9a
Chen Y.
Jin J.
Wu J.
Dai W.-M.
Synlett
2006,
1177
9b For an alternative synthesis, see: Rodríguez-Escrich C.
Olivella A.
Urpí F.
Vilarrasa J.
Org. Lett.
2007,
9:
989
10a
Brown HC.
Bhat K.
J. Am. Chem. Soc.
1986,
108:
293
10b
Roush WR.
Halterman RL.
J. Am. Chem. Soc.
1986,
108:
294
10c
Roush WR.
Ando K.
Powers DB.
Palkowitz AD.
Halterman RL.
J. Am. Chem. Soc.
1990,
112:
6339
10d
Benowitz AB.
Fidanze S.
Small PLC.
Kishi Y.
J. Am. Chem. Soc.
2001,
123:
5128
11
Hackman BM.
Lombardi PJ.
Leighton JL.
Org. Lett.
2004,
6:
4375
12
Garbaccio RM.
Stachel SJ.
Baeschlin DK.
Danishefsky SJ.
J. Am. Chem. Soc.
2001,
123:
10903
13 We used noncrystallized form of the reagent. An 85:15 mixture of (S,S)-9 and its Z-isomer was prepared from an 85:15 mixture of E- and Z-crotyl chloride obtained from Aldrich according to the literature procedure (ref. 11). The Z-isomer of (S,S)-9 reacted with (R)-8 to produce a syn-homoallyl alcohol which is different from 3′. The diaste-
reomeric ratio of >99:1 was estimated according to the 1H NMR spectrum of the product mixture.
14a
Heckrodt TJ.
Mulzer J.
Synthesis
2002,
1857
14b
Bailey WF.
Punzalan ER.
J. Org. Chem.
1990,
55:
5404
15
Inanaga J.
Hirata K.
Saeki H.
Katsuki T.
Yamaguchi M.
Bull. Chem. Soc. Jpn.
1979,
52:
1989
16a
McMurry JE.
Wong GB.
Synth. Commun.
1972,
2:
389 ; and references cited therein
16b For microwave-assisted cleavage of aromatic methyl esters, see: Sheppard GS.
Wang J.
Kawai M.
Fidanze SD.
BaMaung NY.
Erickson SA.
Barnes DM.
Tedrow JS.
Kolaczkowski L.
Vasudevan A.
Park DC.
Wang GT.
Sanders WJ.
Mantei RA.
Palazzo F.
Tucker-Garcia L.
Lou P.
Zhang Q.
Park CH.
Kim KH.
Petros A.
Olejniczak E.
Nettesheim D.
Hajduk P.
Henkin J.
Lesniewski R.
Davidsen SK.
Bell RL.
J. Med. Chem.
2006,
49:
3832
17a
Fürstner A.
Langemann K.
J. Am. Chem. Soc.
1997,
119:
9130
17b
Nevalainen M.
Koskinen AMP.
Angew. Chem. Int. Ed.
2001,
40:
4060
18a
Jafarpour L.
Schanz H.-J.
Stevens ED.
Nolan SP.
Organometallics
1999,
18:
5416
18b
Fürstner A.
Hill AF.
Liebl M.
Wilton-Ely JDET.
Chem. Commun.
1999,
601
18c For use of an analogous indenylidene ruthenium complex of 24 in the synthesis of the ADE-ring system of Nakadomarin A, see: Fürstner A.
Guth O.
Düffels A.
Seidel G.
Liebl M.
Gabor B.
Mynott R.
Chem. Eur. J.
2001,
7:
4811
18d For recent studies on comprehensive comparison of RCM initiators, see: Clavier H.
Nolan SP.
Chem Eur. J.
2007,
13:
8029
18e
Bieniek M.
Michrowska A.
Usanov DL.
Grela K.
Chem. Eur. J.
2008,
14:
806
19
Procedure for Synthesis of (12
Z
)-Amphidinolide X via Ring-Closing Metathesis of the
seco
Ketone 19 Using Second-Generation Grubbs Initiator 23
To a degassed, refluxing solution of the seco ketone 19 (30.0 mg, 6.3×10-2 mmol) in anhyd CH2Cl2 (100 mL) under a nitrogen atmosphere was added the second-generation Grubbs initiator 23 (2.7 mg, 0.3×10-2 mmol). The resulting clear, pale pink solution changed to a clear yellow color after refluxing for 24 h. Three additional portions of 23 (2.7 mg, 0.3×10-2 mmol; a total of 1.2×10-2 mmol) were added after 24, 48, and 72 h, respectively. After refluxing for a total of 4 d, the reaction mixture was concentrated to <1 mL on a rotary evaporator, and the remaining mixture was purified directly by flash column chromatography over SiO2 [eluting with 3% EtOAc in PE (bp 60-90 °C)] to give (12Z)-amphidinolide X [(12Z)-1, 24.0 mg, 85%]. (12Z)-Amphidinolide X [(12Z)-1]: colorless oil; [α]D
17 -16.0 (c 1.00, CHCl3). IR (film): 2964, 1731, 1655, 1454, 1377, 1315, 1269, 1215, 1167, 1049 cm-1. 1H NMR (400 MHz, CDCl3): δ = 6.92 (dd, J = 16.0, 6.4 Hz, 1 H), 5.81 (dd, J = 16.0, 1.6 Hz, 1 H), 5.18 (dt, J = 8.8, 4.0 Hz, 1 H), 4.88 (d, J = 10.4 Hz, 1 H), 4.82 (dt, J = 8.8, 7.2 Hz, 1 H), 3.74 (ddd, J = 10.0, 7.6, 2.8 Hz, 1 H), 2.96-2.89 (m, 1 H), 2.85-2.80 (m, 1 H), 2.66-2.58 (m, 2 H), 2.53 (dd, J = 14.8, 4.8 Hz, 1 H), 2.42-2.33 (m, 2 H), 2.26-2.19 (m, 1 H), 2.16 (s, 3 H), 1.89-1.82 (m, 2 H), 1.70 (s, 3 H), 1.64 (dd, J = 13.2, 7.2 Hz, 1 H), 1.49-1.47 (m, 2 H), 1.36-1.30 (m, 2 H), 1.26 (s, 3 H), 1.15 (d, J = 7.6 Hz, 3 H), 1.05 (d, J = 6.8 Hz, 3 H), 0.91 (t, J = 7.6 Hz, 3 H). 13C NMR (125 MHz, CDCl3): δ = 206.4, 171.3, 166.0, 151.7, 137.3, 126.3, 120.0, 81.9, 79.5, 78.0, 72.8, 44.8, 43.8, 43.1, 40.0, 35.9, 33.9, 31.4, 30.1, 27.3, 26.7, 23.5, 19.6, 17.8, 14.7, 14.6. MS (+ESI):
m/z (rel. int.) = 471 (100) [M + Na+]. HRMS (+ESI): m/z calcd for C26H40O6Na+ [M + Na+], 471.2717; found: 471.2719.
20
Procedure for the Synthesis of Amphidinolide X via Ring-Closing Metathesis of 17 Using Second-Generation Grubbs Initiator 23 as the Key Step
To a degassed, refluxing solution of 17 (150.0 mg, 0.21 mmol) in anhyd CH2Cl2 (150 mL) under a nitrogen atmosphere was added the second-generation Grubbs initiator 23 (8.9 mg, 1.1×10-2 mmol). The resulting clear, pale pink solution changed to a clear yellow color after refluxing for 24 h. Three additional portions of 23 (8.9 mg, 1.1×10-2 mmol; a total of 4.4×10-2 mmol) were added after 24, 48, and 72 h, respectively. After refluxing for a total of 6 d, the reaction mixture was concentrated to <1 mL on a rotary evaporator and the remaining mixture was purified directly by flash column chromatography over SiO2 [eluting with 3% EtOAc in PE (bp 60-90 °C)] to give a 71:29 mixture of the Z and E RCM products 20 and 21 (70.0 mg, 50%) as a colorless oil. The Z/E ratio was determined by the integration of the corresponding signals in the 1H NMR spectrum. An pure sample of isomer 20 was obtained by flash column chromatography [eluting with 3% EtOAc in PE (bp 60-90 °C)] of the product mixture.
Compound 20: colorless oil; [α]D
17 -35.9 (c 2.0, CHCl3).
IR (film): 2929, 1733, 1653, 1456, 1428, 1379, 1268, 1167, 1112, 1086 cm-1. 1H NMR (400 MHz, CDCl3): δ = 7.68-7.65 (m, 4 H), 7.42-7.32 (m, 6 H), 6.93 (dd, J = 16.0, 6.0 Hz, 1 H), 5.75 (dd, J = 16.0, 1.6 Hz, 1 H), 5.02-5.00 (m, 1 H), 4.86 (d, J = 10.8 Hz, 1 H), 4.78 (dt, J = 8.4, 7.2 Hz, 1 H), 3.82-3.78 (m, 1 H), 3.74-3.70 (m, 1 H), 2.97-2.89 (m, 1 H), 2.74-2.67 (m, 1 H), 2.43-2.36 (m, 2 H), 2.30-2.22 (m, 2 H), 1.91-1.71 (m, 4 H), 1.67 (s, 3 H), 1.64-1.61 (m, 2 H), 1.48-1.44 (m, 2 H), 1.36-1.30 (m, 2 H), 1.25 (s, 3 H), 1.14 (d, J = 6.8 Hz, 3 H), 1.02 (d, J = 6.0 Hz, 3 H), 1.00 (s, 9 H), 0.96 (d, J = 7.2 Hz, 3 H), 0.91 (t, J = 7.2 Hz, 3 H). 13C NMR (125 MHz, CDCl3): δ = 171.3, 166.2, 151.8, 136.3 (2), 136.1 (2), 135.7, 135.3, 134.2, 129.7, 129.6, 127.7 (2), 127.6 (2), 127.4, 119.9, 81.7, 79.8, 77.8, 74.3, 67.6, 44.8, 44.0, 40.1, 38.5, 36.1, 33.4, 31.3, 27.2 (3), 27.1, 26.8, 24.2, 23.3, 19.5, 19.3, 17.9, 14.8, 14.4. MS (+ESI): m/z (rel. int.) = 711 (100) [M + Na+]. HRMS (+ESI): m/z calcd for C42H60O6SiNa+ [M + Na+], 711.4051; found: 711.4054.
A plastic tube was charged with the 71:29 mixture of 20 and 21 (50.0 mg) in THF (2 mL) followed by adding 70% hydrogen fluoride pyridine (2 mL) at r.t. The resultant mixture was stirred for 24 h at r.t. and the reaction was quenched carefully with sat. aq Na2CO3. The reaction mixture was extracted with Et2O and the combined organic layer was dried over anhyd Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography over SiO2 [eluting with 20% EtOAc in PE (bp 60-90 °C)] to give a mixture of the alcohol (34.0 mg, 75%) as a colorless oil. The structure of the alcohol was confirmed by mass spectrometry data. MS (+ESI): m/z (rel. int.) = 473 (100) [M + Na+]. HRMS (+ESI): m/z calcd for C26H42O6Na+ [M + Na+]: 473.2874; found: 473.2880.
To a solution of the above mixture (34.0 mg, 7.5×10-2 mmol) in CH2Cl2 (1 mL) at r.t. was added NaHCO3 (19 mg, 0.225 mmol) followed by carefully adding a solution of Dess-Martin periodinane in CH2Cl2 (0.3 M, 0.5 mL, 0.15 mmol). The resultant mixture was stirred at r.t. for 4 h followed by treating with sat. aq Na2S2O3. The reaction mixture was extracted with CH2Cl2. The organic layer was washed with brine, dried over anhyd Na2SO4, filtered, and concentrated under reduced pressure. The residue was purified by flash column chromatography over SiO2 [eluting with 15% EtOAc in PE (bp 60-90 °C)] to give amphidinolide X (1, 8.0 mg, 23%) and (12Z)-amphidinolide X [(12Z)-1, 21.0 mg, 62%].
Amphidinolide X (1): colorless oil; [α]D
17 -26.8 (c 1.00, CHCl3). IR (film): 2963, 1717, 1654, 1453, 1377, 1265, 1186, 1039 cm-1. 1H NMR (500 MHz, CDCl3): δ = 7.12 (dd, J = 15.8, 7.2 Hz, 1 H), 5.79 (dd, J = 15.8, 1.6 Hz, 1 H), 5.20 (m, 2 H), 4.95 (d, J = 10.3 Hz, 1 H), 3.96 (dt, J = 11.2, 3.6 Hz, 1 H), 2.78 (m, 1 H), 2.69 (dd, J = 16.6, 6.1 Hz, 1 H), 2.69 (m, 1 H), 2.58 (dd, J = 13.6, 3.9 Hz, 1 H), 2.58 (dd, J = 16.5, 7.5 Hz, 1 H), 2.41 (dd, J = 13.3, 6.3 Hz, 1 H), 2.18 (m, 1 H), 2.17 (m, 1 H), 2.14 (s, 3 H), 2.12 (m, 1 H), 1.94 (tt, J = 13.5, 3.3 Hz, 1 H), 1.75 (dd, J = 13.9, 2.4 Hz, 1 H), 1.55 (s, 3 H), 1.54 (m, 1 H), 1.50 (m, 2 H), 1.35 (m, 2 H), 1.30 (s, 3 H), 1.14 (d, J = 6.9 Hz, 3 H), 0.92 (t, J = 7.5 Hz, 3 H), 0.91 (d, J = 7.1 Hz, 3 H). 13C NMR (125 MHz, CDCl3): δ = 205.5, 170.7, 165.8, 153.2, 135.6, 126.1, 120.3, 83.0, 80.6, 78.5, 74.3, 47.2, 44.3, 43.6, 41.5, 35.6, 35.4, 33.1, 30.5, 30.5, 24.7, 18.2, 17.9, 17.6, 15.5, 14.7. MS (+ESI): m/z (rel. int.) = 471 (100) [M + Na+]. HRMS (+ESI): m/z calcd for C26H40O6Na+ [M + Na+]: 471.2717; found: 471.2699.
Remote control of alkene geometry by endocyclic groups in ring-closing metathesis has been reported. For examples of formation of disubstituted macrocyclic alkenes, see:
21a
Meng D.
Su D.-S.
Balog A.
Bertinato P.
Sorensen EJ.
Danishefsky SJ.
Zheng Y.-H.
Chou T.-C.
He L.
Horwitz SB.
J. Am. Chem. Soc.
1997,
119:
2733
21b
Fürstner A.
Thiel OR.
Blanda G.
Org. Lett.
2000,
2:
3731
21c
Fürstner A.
Dierkes T.
Thiel OR.
Blanda G.
Chem. Eur. J.
2001,
7:
5286
21d
Aïssa C.
Riveiros R.
Ragot J.
Fürstner A.
J. Am. Chem. Soc.
2003,
125:
15512
21e
Couladouros EA.
Mihou AP.
Bouzas EA.
Org. Lett.
2004,
6:
977
21f
Castoldi D.
Caggiano L.
Panigada L.
Sharon O.
Costa AM.
Gennari C.
Angew. Chem. Int. Ed.
2005,
44:
588
21g
Matsumura T.
Akiba M.
Arai S.
Nakagawa M.
Nishida A.
Tetrahedron Lett.
2007,
48:
1265
21h
Mohapatra DK.
Ramesh DK.
Giardello MA.
Chorghade MS.
Gurjara MK.
Grubbs RH.
Tetrahedron Lett.
2007,
48:
2621
21i For examples of formation of trisubstituted macrocyclic alkenes, see: Meng D.
Bertinato P.
Balog A.
Su D.-S.
Kamenecka T.
Sorensen EJ.
Danishefsky SJ.
J. Am. Chem. Soc.
1997,
119:
10073
21j
Nicolaou KC.
Vassilikogiannakis G.
Montagnon T.
Angew. Chem. Int. Ed.
2002,
41:
3276
21k
Nicolaou KC.
Montagnon T.
Vassilikogiannakis G.
Mathison CJN.
J. Am. Chem. Soc.
2005,
127:
8872
21l
Vassilikogiannakis G.
Margaros I.
Tofi M.
Org. Lett.
2004,
6:
205
21m
Alhamadsheh MM.
Gupta S.
Hudson RA.
Perera L.
Tillekeratne LMV.
Chem. Eur. J.
2008,
14:
570
21n
Trost BM.
Dong G.
Vance JA.
J. Am. Chem. Soc.
2007,
129:
4540
21o
Ramírez-Fernández J.
Collado IG.
Hernández-Galán R.
Synlett
2008,
339 ; see also ref. 7