RSS-Feed abonnieren
DOI: 10.1055/s-2008-1078056
A Stable Synthetic Equivalent of 2,3-Dihydropyridine
Publikationsverlauf
Publikationsdatum:
12. September 2008 (online)

Abstract
We introduce a synthetic procedure of 2,3-dihydropyridine derivative from its stable synthetic equivalent. The synthesis of a chiral 2,3-dihydropyridine derivative in a high yield and the unique mechanism of the unmasking step are described.
Key words
dihydropyridine - synthetic equivalent - enamine - imine - enone
- 1a
Baldwin JE.Whitehead RC. Tetrahedron Lett. 1992, 33: 2059Reference Ris Wihthout Link - 1b
Yu L.-B.Chen D.Li J.Ramirez J.Wang PG.Bott SG. J. Org. Chem. 1997, 62: 208Reference Ris Wihthout Link - 1c
Baldwin JE.Spring DR.Whitehead RC. Tetrahedron Lett. 1998, 39: 5417Reference Ris Wihthout Link - 1d
Ruggeri RB.Hansen MM.Heathcock CH. J. Am. Chem. Soc. 1988, 110: 8734Reference Ris Wihthout Link - 1e
Kaiser A.Billot X.Gateau-Olesker A.Marazano C.Das BC. J. Am. Chem. Soc. 1998, 120: 8026Reference Ris Wihthout Link - 1f
Baldwin JE.Claridge TDW.Culshaw AJ.Heupel FA.Lee V.Spring DR.Whitehead RC. Chem. Eur. J. 1999, 5: 3154Reference Ris Wihthout Link - 1g
Jakubowicz K.Abdeljelil KB.Herdemann M.Martin M.-T.Gateau-Olesker A.Al-Mourabit A.Marazano C.Das BC. J. Org. Chem. 1999, 64: 7381Reference Ris Wihthout Link - 1h
Gomez J.-M.Gil L.Ferroud C.Gateau-Olesker A.Martin M.-T.Marazano C. J. Org. Chem. 2001, 66: 4898Reference Ris Wihthout Link - 1i
Herdemann M.Al-Mourabit A.Martin M.-T.Marazano C. J. Org. Chem. 2002, 67: 1890Reference Ris Wihthout Link - 1j
Wypych J.-C.Nguyen TM.Nuhant P.Bénéchie M.Marazano C. Angew. Chem. Int. Ed. 2008, 47: 5418Reference Ris Wihthout Link - 2
Jones G. In Comprehensive Heterocyclic Chemistry II Vol. 5:Katritzky A.Rees CW.Scriven EFV. Pergamon; Oxford: 1996. p.167Reference Ris Wihthout Link - 3a
Hasan I.Fowler FW. J. Am. Chem. Soc. 1978, 100: 6696Reference Ris Wihthout Link - 3b
Lasne M.Ripoll J.Guillemin J.Denis J. Tetrahedron Lett. 1984, 35: 3847Reference Ris Wihthout Link - 4a
Kita M.Kondo M.Koyama T.Yamada K.Matsumoto T.Lee K.Woo J.Uemura D. J. Am. Chem. Soc. 2004, 126: 4794Reference Ris Wihthout Link - 4b
Kita M.Ohishi N.Washida K.Kondo M.Koyama T.Yamada K.Uemura D. Bioorg. Med. Chem. 2005, 13: 5253Reference Ris Wihthout Link - 4c
Zou Y.Che Q.Snider BB. Org. Lett. 2006, 24: 5605Reference Ris Wihthout Link - 4d
Kim J.Thomson RJ. Angew. Chem. Int. Ed. 2007, 46: 3104Reference Ris Wihthout Link - 5
Kita M.Uemura D. Chem. Lett. 2005, 454 - 6
Born S.Olson EE.Kobayashi Y. Synthetic Studies towards (+)-Symbioimine, In Abstracts of Papers 232nd National Meeting of the American Chemical Society; San Francisco CA: Sept 10-14, 2006. American Chemical Society: Washington D. C., 2006; ORGN-748Reference Ris Wihthout Link
References and Notes
Under thermal (>100 ˚C), Brønsted/Lewis acid (TfOH, TFA, CSA-TsOH, BF3˙OEt, MeAlCl2, Et2AlCl, EtAlCl2, etc.), basic (NaOEt, NaOH, LDA, etc.), or nucleophilic conditions (dimedone, piperidine, NaSEt, etc.).
8
Experimental Procedure
for Preparation of Compound 2
To a 50 mL round-bottom
flask at 25 ˚C was added 6
(1.23
g, 3.38 mmol) and benzene (34 mL). Pyridinium
p-toluenesulfonate
(PPTS, 85 mg, 0.34 mmol, 10 mol%) was then added and the
solution allowed stirring under reflux while monitoring by TLC.
After 1 h, the reaction was quenched by the addition of sat. NaHCO3,
and separated. The aqueous layer was extracted twice with EtOAc,
the combined organics washed with brine, and dried over Na2SO4.
Concentration in vacuo yielded crude material which was then purified
on SiO2 (hexane-EtOAc, 5:1) to yield compound 2 (1:1 mixture of diastereomers 2 and 2′, 1.07
g, 95%) as a clear oil. ¹H NMR (400
MHz, CDCl3): δ = 7.28-7.20
(m, 2 H and 2 H′), 7.18-7.08 (m, 3 H and 3 H′),
6.00-5.90 (m, 1 H and 1 H′), 5.32 (d, J = 17.2 Hz,
1 H and 1 H′), 5.23 (d, J = 10.0
Hz, 1 H and 1 H′), 4.95 (d, J =
4.4
Hz, 1 H), 4.90 (d, J = 3.6
Hz, 1 H′), 4.63 (d, J = 5.6
Hz, 2 H and 2 H′), 3.73 (dd, J = 2.4,
12.8 Hz, 1 H), 3.67 (dd, J = 2.8,
12.8 Hz, 1 H′), 3.34 (dd, J = 7.2,
12.8 Hz, 1 H′), 3.31 (app. t, J = 4.8
Hz, 1 H′), 3.14 (dd, J = 9.2,
12.4 Hz, 1 H), 2.99 (m, 1 H), 2.89-2.65 (m, 4 H and 4 H′),
2.45 (q, J = 7.6 Hz,
2 H), 2.43 (q, J = 7.2
Hz, 2 H′), 2.14-2.10 (m, 1 H), 1.95-1.90
(m, 1 H′), 1.20 (t, J = 7.2
Hz, 3 H′), 1.18 (t, J = 7.2 Hz,
3 H), 1.06 (d, J = 6.8
Hz, 3 H), 0.99 (d, J = 6.8
Hz, 3 H′). 3C NMR (100 MHz, CDCl3): δ = 154.0
(C and C′), 141.5 (C′), 141.5, 139.9, 138.8 (C′),
132.5 (C and C′), 128.5 (2C′), 128.5 (2C), 128.2
(2 C and 2 C′), 125.8 (C and C′), 118.1 (C and
C′), 112.7 (C and C′), 66.42 (C′), 66.38,
49.0, 48.5 (C′), 45.7, 45.1 (C′), 37.0 (C′),
36.8, 34.7 (C′), 34.4, 33.5 (C′), 26.5 (C′),
24.0, 16.9, 15.2 (C′), 14.89 (C′), 14.85. HRMS: m/z calcd for C20H27NO2S:
345.1757; found: 345.1755.
Experimental Procedure
for Preparation of Compound 1
To a 10 mL round-bottom
flask at 25 ˚C was added 2 (70 mg,
0.20 mmol) in THF (0.4 mL), and placed under a blanket of nitrogen.
Then, Pd2dba3˙CHCl3 (5.2
mg, 0.005 mmol,
5 mol%) and 1,4-bis(diphenylphosphino)butane
(dppb,
8.6 mg, 0.020 mmol, 10 mol%) were added
and the solution allowed stirring while monitoring by TLC. Upon
completion after 2 h, the solution was diluted with THF, filtered
over Celite, and concentrated in vacuo to yield compound 1 as a viscous oil. ¹H
NMR (400 MHz, CDCl3): δ = 7.28-7.23
(m, 2 H), 7.20-7.14 (m, 3 H), 6.21 (dd, J = 3.5,
9.5 Hz, 1 H), 5.86 (dd, J = 2.5,
10.0 Hz, 1 H), 3.66 (dd, J = 7.0,
15.5 Hz, 1 H), 3.16 (dd, J = 12.0,
16.0 Hz, 1 H), 2.86 (t, J = 7.5
Hz, 2 H), 2.56 (t, J = 8.5
Hz, 2 H), 2.27 (m, 1 H), 0.98 (d, J = 7.5
Hz, 3 H). 13C NMR (100 MHz, CDCl3): d = 165.3, 142.7, 141.5, 128.6
(2 C), 128.3 (2 C), 125.9, 121.7, 53.4, 35.7, 32.6, 30.4, 17.3.
HRMS: m/z calcd for C14H19N:
199.1356; found: 199.1357.