Synlett 2008(14): 2115-2118  
DOI: 10.1055/s-2008-1078244
LETTER
© Georg Thieme Verlag Stuttgart ˙ New York

Synthesis of Isoxazoline-Fused Bicyclic Enediynes via Intramolecular Nitrile Oxide-Alkene Cycloaddition

Amit Basak*, Runa Pal
Department of Chemistry, Indian Institute of Technology, Kharagpur 721302, India
e-Mail: absk@chem.iitkgp.ernet.in;
Further Information

Publication History

Received 30 April 2008
Publication Date:
31 July 2008 (online)

Abstract

The intramolecular nitrile oxide-alkene cycloaddition has been studied in an enediyne system. It has been shown to be an efficient method for one-step synthesis of isoxazoline-fused bicyclic enediynes. The thermal reactivity of these enediynes is similar to the isoxazolidine-fused counterparts, thus ruling out any significant effect by the bridgehead double bond.

    References and Notes

  • 1a Basak A. Shain JC. Khamrai UK. Rudra KR. Basak A. J. Chem. Soc., Perkin Trans. 1  2000,  1955 
  • 1b Kar M. Basak A. Chem. Rev.  2007,  107:  2861 
  • 1c Basak A. Bdour HM. Shain JC. Mandal S. Rudra KR. Nag S. Bioorg. Med. Chem. Lett.  2000,  10:  1321 
  • 2 Pal R. Basak A. Chem. Commun.  2006,  2992 
  • 3 Basak A. Ghosh SC. Tetrahedron Lett.  2005,  46:  7385 
  • 4a Lee MD. Dunne TS. Siegel MM. Chang CC. Morton GO. Borders DB. J. Am. Chem. Soc.  1987,  109:  3464 
  • 4b Zein N. McGahren WJ. Morton GO. Ashcroft J. Ellested GA. J. Am. Chem. Soc.  1989,  111:  6888 
  • 4c Lee MD. Manning JK. Williams DR. Kuck NA. Testa RT. Borders DB. J. Antibiot.  1989,  42:  1070 
  • 4d De Voss JJ. Hangeland JJ. Townsend CA. J. Am. Chem. Soc.  1990,  112:  4554 
  • 4e De Voss JJ. Townsend CA. Ding W.-D. Morton GO. Ellested GA. Zein N. Tabor AB. Schreiber SL. J. Am. Chem. Soc.  1990,  112:  9669 
  • 4f Lee MD. Dunne TS. Chang CC. Siegel MM. Morton GM. Ellested GA. McGahren WJ. Borders DB. J. Am. Chem. Soc.  1992,  114:  985 
  • 5a Carruthers W. Cycloaddition Reactions in Organic Synthesis   Pergamon Press; Oxford: 1990.  p.269 
  • 5b Tufariello JJ. 1,3-Dipolar Cycloaddition Chemistry   Vol. 2:  Padwa A. Wiley; New York: 1984.  p.83 
  • 5c Torssell KBG. Nitrile Oxides, Nitrones and Nitronates in Organic Synthesis   Wiley; U.S.A.: 1988. 
  • 6a Sonogashira K. Tohoda Y. Hagihara N. Tetrahedron Lett.  1975,  16:  4467 
  • 6b Takahashi S. Kuroyama Y. Sonogashira K. Hagihara N. Synthesis  1980,  627 
  • 7 For synthesis of allylacetylenes from terminal acetylenes and allyl halides, see: Bumagin NA. Ponomarev AB. Beletskaya IP. Izv. Akad. Nauk SSSR, Ser. Khim.  1987,  7:  1565 
  • 8 Dess DB. Martin JC. J. Am. Chem. Soc.  1991,  113:  7277 
  • 9a Mukhopadhyay R. Datta S. Chattopadhyay PC. Bhattacharjya A. Patra A. Indian J. Chem., Sect. B: Org. Chem. Incl. Med. Chem.  1996,  35:  1190 
  • 9b Shing TKM. Fung WC. Wong CH. J. Chem. Soc., Chem. Commun.  1994,  449 
  • 11a Elias H.-G. Macromolekule   Vol. 1:  Huthig & Wepf Verlag; Basel: 1990.  p.817 
  • 11b Grubbs RH. Kratz D. Chem. Ber.  1993,  126:  149 
10

ArgusLab version 4.0.1, Thomson and Planaria Software LLC.

12

Selected Spectroscopic Data: Compound 11: ¹H NMR (400 MHz): δ = 1.22 (t, J = 7.0 Hz, 3 H, COOCH2CH 3), 2.64-2.76 (m, 1 H, CHCH 2COOEt), 3.20-3.22 (m, 2 H, CCCH 2CH), 3.82-3.89 (m, 2 H, CCCHCH2NO2), 4.26 (q, J = 7.2 Hz, 2 H, COOCH 2CH3), 4.55-4.66 (m, 2 H, CHCH 2NO2), 5.13 (dd, J = 1.6, 10.0 Hz, 1 H, CH2CHCH 2), 5.40 (dd, J = 2.0, 17.2 Hz, 1 H, CH2CHCH 2), 5.84-5. 90 (m, 1 H, CH2CH=CH2), 7.12-7.19 (m, 2 H, ArH), 7.28-7.38 (m, 2 H, ArH). ¹³C NMR (100 MHz): δ = 0.96, 14.1, 30.1, 31.7, 36.4, 61.2, 81.2, 83.3, 88.6, 90.9, 115.7, 125.1, 126.2, 126.5, 128.2, 128.7, 130.8, 140.7, 170.0. MS (ESI): m/z = 325 [M+].
Compound 1A: ¹H NMR (400 MHz): δ = 1.29 (t, J = 6.0 Hz, 3 H, COOCH2CH 3), 2.68 (dd, J = 7.2, 12.8 Hz, 1 H, Hg), 2.74 (dd, J = 3.2, 14.8 Hz, 1 H, Hd), 2.83 (dd, J = 5.6, 12.8 Hz, 1 H, Hh), 2.91 (dd, J = 1.6, 14.8 Hz, 1 H, He), 3.20 (dd, J = 8.4, 13.2 Hz, 1 H, Hc), 3.60 (dd, J = 2.8, 13.2 Hz, 1 H, Hb), 4.20 (q, J = 5.6 Hz, 2 H, COOCH 2CH3), 4.45 (dd, J = 1.6, 5.6 Hz, 1 H, Hf), 4.93-4.97 (m, 1 H, Ha), 7.21-7.29 (m, 2 H, ArH), 7.34-7.36 (m, 2 H, ArH). ¹³C NMR (100 MHz): δ = 14.1, 27.3, 28.7, 29.6, 35.7, 36.3, 61.2, 81.6, 85.0, 88.4, 92.0, 124.9, 127.6, 128.1, 128.2, 129.1, 130.8, 155.5, 169.7. MS (ESI): m/z = 330 [M + Na+]. HRMS: m/z calcd for C19H18NO3 [M + H+]: 308.3512; found: 308.3510.
Compound 1B: ¹H NMR (400 MHz): δ = 1.28 (t, J = 5.6 Hz, 3 H, COOCH2CH 3), 2.72 (dd, J = 3.4, 14.6 Hz, 1 H, He), 2.91 (dd, J = 3.2, 14.6 Hz, 1 H, Hd), 2.95 (dd, J = 1.6, 14.4 Hz, 1 H, Hg), 3.23 (dd, J = 4.8, 14.4 Hz, 1 H, Hh), 3.30 (dd, J = 7.2, 14.0 Hz, 1 H, Hb), 3.63 (dd, J = 2.8, 14.0 Hz, 1 H, Hc), 3.96 (dd, J = 4.8, 7.2 Hz, 1 H, Hf), 4.20 (q, J = 2.4 Hz, 2 H, COOCH 2CH3), 4.92-4.96 (m, 1 H, Ha), 7.20-7.29 (m, 2 H, ArH), 7.34-7.36 (m, 2 H, ArH). ¹³C NMR (100 MHz): δ = 14.1, 27.2, 28.5, 29.6, 35.6, 39.9, 60.9, 81.5, 84.9, 88.6, 92.3, 125.0, 127.6, 128.0, 128.3, 129.1, 130.8, 156.3, 171.0. MS (ESI): m/z 330 [M + Na+]. HRMS: m/z calcd for C19H18NO3 [M + H+]: 308.3512; found: 308.3509.