Subscribe to RSS
DOI: 10.1055/s-2008-1078249
Synthesis of Mucin Glycans from the Protozoon Parasite Trypanosoma cruzi
Publication History
Publication Date:
05 August 2008 (online)
Abstract
A short, blockwise, 2+2-glycosylation approach to the synthesis of a tetrasaccharide component of Trypanosoma cruzi mucin is reported. Despite the use of a 1,2-linked disaccharide donor, high yield (79%) and good stereocontrol (>10:1, β:α) were achieved in the key glycosylation step. Preliminary studies indicate that this branched tetrasaccharide can serve as a substrate for enzymatic sialylation by the parasite cell surface trans-sialidase.
Key words
oligosaccharide - synthesis - parasite - mucin - trans-sialidase - drug target
- 2
Spiro RG. Glycobiology 2002, 12: 43R - 3
Buscaglia CA.Campo VA.Frasch ACC.DiNoia JM. Nature Rev. Microbiol. 2006, 4: 229 -
4a
Schenkman S.Jiang M.-S.Hart GW.Nussenzweig V. Cell 1991, 65: 1117 -
4b
Cross GAM.Takle GB. Annu. Rev. Microbiol. 1993, 47: 385 ; and citations thereof - 5
Ferguson MAJ.Brimacombe JS.Cottaz S.Field RA.Guther LS.Homans SW.McConville MJ.Mehlert A.Milne KG.Ralton JE.Roy YA.Schneider P.Zitzmann N. Parasitology 1994, 108: S45 - For instance, see:
-
6a
Damager I.Buchini S.Amaya MF.Buschiazzo A.Alzari P.Frasch AC.Watts A.Withers SG. Biochemistry 2008, 47: 3507 -
6b
Blume A.Neubacher B.Thiem J.Peters T. Carbohydr. Res. 2007, 342: 1904 -
6c
Amaya MF.Watts AG.Damager I.Wehenkel A.Nguyen T.Buschiazzo A.Paris G.Frasch AC.Withers SG.Alzari PM. Structure 2004, 12: 775 -
6d
Haselhorst T.Wilson JC.Liakatos A.Kiefel MJ.Dyason JC.von Itzstein M. Glycobiology 2004, 14: 895 -
6e
Watts AG.Damager I.Amaya ML.Buschiazzo A.Alzari P.Frasch AC.Withers SG. J. Am. Chem. Soc. 2003, 125: 7532 - For representative examples, see:
-
7a
Agusti R.Giorgi ME.de Lederkremer RM. Carbohydr. Res. 2007, 342: 2465 -
7b
Kroeger L.Scudlo A.Thiem J. Adv. Synth. Catal. 2006, 348: 1217 -
7c
Neubacher B.Schmidt D.Ziegelmuller P.Thiem J. Org. Biomol. Chem. 2005, 3: 1551 -
7d
Turnbull WB.Harrison JA.Kartha KPR.Schenkman S.Field RA. Tetrahedron 2002, 58: 3207 -
7e
Singh S.Scigelova M.Hallberg ML.Howarth OW.Schenkman S.Crout DHG. Chem. Commun. 2000, 1013 -
7f
Probert MA.Milton MJ.Harris R.Schenkman S.Brown JM.Homans SW.Field RA. Tetrahedron Lett. 1997, 38: 5861 - 8
Harrison JA.Kartha KPR.Turnbull WB.Scheuerl SL.Naismith JH.Schenkman S.Field RA. Bioorg. Med. Chem. Lett. 2001, 11: 141 -
9a
Harris R.Kiddle GR.Field RA.Milton MJ.Ernst B.Magnani JL.Homans SW. J. Am. Chem. Soc. 1999, 121: 2546 -
9b
Milton MJ.Harris R.Probert MA.Field RA.Homans SW. Glycobiology 1998, 8: 147 - 10
Islam T.von Itzstein M. Adv. Chem. Biochem. 2008, 61: 292 - 11
Neres J.Bryce RA.Douglas KT. Drug Discov. Today 2008, 13: 110 - For instance, see:
-
12a
Agusti R.Giorgi ME.Mendoza VM.Gallo-Rodriguez C.de Lederkremer RM. Bioorg. Med. Chem. 2007, 15: 2611 -
12b
Mendoza VM.Agusti R.Gallo-Rodriguez C.de Lederkremer RM. Carbohydr. Res. 2006, 341: 1488 -
12c
Agusti R.Mendoza VM.Gallo-Rodriguez C.de Lederkremer RM. Tetrahedron: Asymmetry 2005, 16: 541 ; and references cited therein - 13
Campo VL.Carvalho I.Allman S.Davis BG.Field RA. Org. Biomol. Chem. 2007, 5: 2645 - 14
Previato JO.Jones C.Xavier MT.Wait R.Travassos LR.Parodi A.Mendonca-Previato L. J. Biol. Chem. 1995, 270: 7241 - 15
Bongat AFG.Demchenko AV. Carbohydr. Res. 2007, 342: 374 - 17
Byramova NE.Ovchinnikov MV.Backinowsky LV.Kochetkov NK. Carbohydr. Res. 1983, 124: C8 -
18a
Doboszewski B.Zamojski A. Carbohydr. Res. 1984, 132: 29 -
18b
Nepogodiev SA.Backinowsky LV.Grzeszczyk B.Zamojski A. Carbohydr. Res. 1994, 254: 43 - 19
Schmidt RR.Kinzy W. Adv. Carbohydr. Chem. Biochem. 1994, 50: 21 - 20
Fujiwara T.Arai K. Carbohydr. Res. 1980, 87: 11 -
21a
Schmidt RR.Behrendt M.Toepfer A. Synlett 1990, 694 -
21b
Braccini I.Derouet C.Esnault J.Herve du Penhoat C.Mallet J.-M.Michon V.Sinay P. Carbohydr. Res. 1993, 246: 23 - 24
Winans KA.King DS.Rao VR.Bertozzi CR. Biochemistry 1999, 38: 11700
References and Notes
http://www.who.int/topics/chagas_disease/en/.
16The studies reported herein have been conducted in parallel with efforts that replace the reducing terminal N-acetyl-glucosamine unit with mannose, which offers more straightforward entry to an α-linked amino acid-glycan linkage.
22In the parallel series with a mannose
at the reducing terminus, the corresponding coupling gave complete
β-stereocontrol
albeit in lower yield (54%).
Selected Analytical
Data
Imidate 3: [α]D
²0 +41.0
(c 1, CHCl3). ¹H
NMR (400MHz, CDCl3): δ = 8.65 (s, 1
H, NH), 6.51 (d, 1 H, H1, J
1,2 = 3.6 Hz),
4.66 (d,1 H, H1′, J
1
′
,2
′ = 7.8
Hz). ¹³C NMR (100 MHz, CDCl3): δ = 160.7
(C=NH), 101.3 (C1′), 94.9 (C1). HRMS: m/z calcd for C28O18NCl3H36 [M + NH4]:
797.1336; found: 797.1339.
Tetrasaccharide 5: [α]D
²0 -4.0
(c 1 in CHCl3). ¹H
NMR (600 MHz, CDCl3): δ = 4.78 (d,
1 H, H1c, J
1,2 = 8.0
Hz), 4.70 (d, 1 H, H1a, J
1,2 = 10.0
Hz), 4.60 (d, 1 H, H1b, J
1,2 = 7.7
Hz), 4.55 (d, 1 H, H1d, J
1,2 = 7.9
Hz). ¹³C NMR (100 MHz, CDCl3): δ = 101.7
(C1b), 100.9 (C1c), 100.3 (C1d), 85.5 (C1a). MS (ES): m/z = 1372.5 [M + Na]+.
Tetrasaccharide 1: [α]D
²0 +15.0
(c 1 in H2O). ¹H
NMR, (400 MHz, D2O): δ = 4.87 (d, 1
H, H1a, J
1,2 = 10.4
Hz), 4.37 (d, 1 H, H1b, J
1,2 = 6.8
Hz), 4.34 (d, 1 H, H1c, J
1,2 = 8.0
Hz), 4.31 (d, 1 H, H1d, J
1,2 = 7.9
Hz). ¹³C NMR (75 MHz, D2O): δ = 175.1
(C=ONHAc), 104.2 (C1c), 103.8 (C1d), 102.2 (C1b), 85.9
(C1a). HRMS: m/z calcd for C32H49N3O20S [M + Na]+:
822.2461; found: 822.2487.