Abstract
Pyridines can be efficiently synthesized by the transition-metal-catalyzed [2+2+2] cycloaddition
reactions between two alkynes and one nitrile. In this account,
we present the state of the art in this area with particular emphasis
on the metal catalyst utilized in the reaction.
1 Introduction
2 Cobalt-Catalyzed [2+2+2] Cycloadditions
3 Rhodium-Catalyzed [2+2+2] Cycloadditions
4 Ruthenium-Catalyzed [2+2+2] Cycloadditions
5 Nickel-Catalyzed [2+2+2] Cycloadditions
6 Conclusions
Key words
alkynes - cycloadditions - transition-metal
catalysis - nitriles - pyridines
References
1
Pozharskii AF.
Soldatenkov AT.
Katritzky AR.
Heterocycles in Life
and Society
John Wiley & Sons;
Chichester:
1997.
2
Comprehensive
Heterocyclic Chemistry III
Vol. 7:
Katritzky A.
Ramsden C.
Scriven E.
Taylor R.
Elsevier
Science;
Oxford:
2008.
3a
Tietze LF.
Haunert F. In
Stimulating Concepts in Chemistry
Vögtle F.
Stoddart JF.
Shibasaki M.
Wiley-VCH;
Weinheim:
2000.
p.39
3b
Trost BM.
Angew. Chem. Int. Ed. Engl.
1995,
34:
259
3c
Trost BM.
Science
1991,
254:
1471
For reviews on metal-mediated cycloaddition
reactions, see:
4a
Tietze LF.
Ila H.
Bell HP.
Chem. Rev.
2004,
104:
3453
4b
Bolm C.
Legros J.
Le Paih J.
Zani L.
Chem. Rev.
2004,
104:
6217
4c
Frühauf H.-W.
Chem. Rev.
1997,
97:
523
4d
Lautens M.
Klute W.
Tam W.
Chem.
Rev.
1996,
96:
49
4e
Ojima I.
Tzamarioudaki M.
Li Z.
Donovan RJ.
Chem. Rev.
1996,
96:
635
For reviews on metal-mediated [2+2+2] cycloadditions, see:
5a
Chopade PR.
Louie J.
Adv. Synth.
Catal.
2006,
348:
2307
5b
Gandon V.
Aubert C.
Malacria M.
Chem. Commun.
2006,
2209
5c
Kotha S.
Brahmachary E.
Lahiri K.
Eur.
J. Org. Chem.
2005,
4741
5d
Yamamoto Y.
Curr.
Org. Chem.
2005,
9:
503
5e
Nakamura I.
Yamamoto Y.
Chem. Rev.
2004,
104:
2127
5f
Saito S.
Yamamoto Y.
Chem. Rev.
2000,
100:
2901
5g
Schore NE.
Chem. Rev.
1988,
88:
1081
5h See also ref. 4.
6
Varela JA.
Saá C.
Chem. Rev.
2003,
103:
3787
7
Heller B.
Hapke M.
Chem. Soc. Rev.
2007,
36:
1085
8
Henry GD.
Tetrahedron
2004,
60:
6043
For pioneering work on the cobalt-catalyzed
synthesis of pyridines, see:
9a
Bönnemann H.
Brijoux W. In Transition Metals for Organic Synthesis
Vol.
1:
Beller M.
Bolm C.
Wiley-VCH;
Weinheim:
1998.
p.114
9b
Bönnemann H.
Brijoux W.
Adv. Heterocycl.
Chem.
1990,
48:
177
9c
Bönnemann H.
Angew. Chem. Int. Ed. Engl.
1985,
24:
248
9d
Vollhardt KPC.
Angew. Chem. Int. Ed. Engl.
1984,
23:
539
9e
Wakatsuki Y.
Yamazaki H.
J. Chem. Soc., Dalton Trans.
1978,
1278
9f
Wakatsuki Y.
Yamazaki H.
Synthesis
1976,
26
10
Comprehensive
Coordination Chemistry II: From Biology to Nanotechnology
McCleverty JA.
Meyer TJ.
Elsevier;
Oxford:
2004.
11
Varela JA.
Castedo L.
Saá C.
J.
Org. Chem.
1997,
62:
4189
12 In the cobalt-catalyzed reaction involving
2-ethynyl-pyridine, benzene derivatives resulting from cyclotrimerization
were the major products observed.
13 For examples of the competition
between steric and electronic factors, see: Saá C.
Crotts DD.
Hsu G.
Vollhardt KPC.
Synlett
1994,
487
14 Other interesting pyridine ligands,
the C
2 -symmetric spiropyridines,
could also be prepared by the double cobalt-catalyzed [2+2+2] cycloaddition
of bis(ω-alkynyl-α-nitriles), see: Varela JA.
Castedo L.
Saá C.
Org. Lett.
1999,
1:
2141
15
Varela JA.
Castedo L.
Saá C.
J.
Am. Chem. Soc.
1998,
120:
12147
16
Varela JA.
Castedo L.
Maestro M.
Mahía J.
Saá C.
Chem.
Eur. J.
2001,
7:
5203
17
Vázquez EM.
Masters Thesis
Universidad
de Santiago de Compostela;
Spain:
1997.
18
Boñaga LVR.
Zhang HC.
Maryanoff BE.
Chem. Commun.
2004,
10:
2394
19
Boñaga LVR.
Zhang HC.
Moretto AF.
Ye H.
Gauthier DA.
Li J.
Leo GC.
Maryanoff BE.
J. Am. Chem. Soc.
2005,
127:
3473
20
Senaiar RS.
Young DD.
Deiters A.
Chem.
Commun.
2006,
1313
21
Young DD.
Deiters A.
Angew. Chem. Int. Ed.
2007,
46:
5187
22a
Heller B.
Sundermann B.
Fischer C.
You J.
Chen W.
Drexler HJ.
Knochel P.
Bonrath W.
Gutnov A.
J. Org. Chem.
2003,
68:
9221
For other examples, see:
22b
Hoshi T.
Katano M.
Nozawa E.
Suzuki T.
Hagiwara H.
Tetrahedron
Lett.
2004,
45:
3489
23a
Heller B.
Gutnov A.
Fischer C.
Drexler H.-J.
Spannenberg A.
Redkin D.
Sundermann C.
Sundermann B.
Chem.
Eur. J.
2007,
13:
1117
23b
Gutnov A.
Heller B.
Fischer C.
Drexler H.-J.
Spannenberg A.
Sundermann B.
Sundermann C.
Angew.
Chem. Int. Ed.
2004,
43:
3795
24
Kase K.
Goswami A.
Ohtaki K.
Tanabe E.
Saino N.
Okamoto S.
Org. Lett.
2007,
9:
931
25
Chang HT.
Jeganmohan M.
Cheng CH.
Org.
Lett.
2007,
9:
505
26
Diversi P.
Ermini L.
Ingrosso G.
Lucherini A.
J. Organomet. Chem.
1993,
447:
291
27a
Tanaka K.
Hara H.
Nishida G.
Hirano M.
Org. Lett.
2007,
9:
1907
27b
Tanaka K.
Suzuki N.
Nishida G.
Eur. J.
Org. Chem.
2006,
3917
28
Wada A.
Noguchi K.
Hirano M.
Tanaka K.
Org. Lett.
2007,
9:
1295
29a
Yamamoto Y.
Ogawa R.
Itoh K.
J. Am. Chem. Soc.
2001,
123:
6189
29b
Yamamoto Y.
Okuda S.
Itoh K.
Chem.
Commun.
2001,
1102
30a
Yamamoto Y.
Kinpara K.
Ogawa R.
Nishiyama H.
Itoh K.
Chem. Eur. J.
2006,
12:
5618
30b
Yamamoto Y.
Kinpara K.
Saigoku F.
Takagishi H.
Okuda S.
Nishiyama H.
Itoh K.
J.
Am. Chem. Soc.
2005,
127:
605
30c
Yamamoto Y.
Kinpara K.
Nishiyama H.
Itoh K.
Adv. Synth. Catal.
2005,
347:
1913
31
Varela JA.
Castedo L.
Saá C.
J.
Org. Chem.
2003,
68:
8595
32
McCormick MM.
Duong HA.
Zuo G.
Louie J.
J. Am. Chem. Soc.
2005,
127:
5030