References and Notes
1a
Daly JW.
Spande TF.
Garraffo HM.
J. Nat. Prod.
2005,
68:
1556
1b
Daly JW.
Garraffo HM.
Spande TF. In Alkaloids:
Chemical and Biological Perspectives
Vol. 13:
Pelletier SW.
Pergamon
Press;
New York:
1999.
p.1-161
2a
Francke W.
Schroder F.
Walter F.
Sinnwell V.
Baumann H.
Kaib M.
Liebigs
Ann.
1995,
965
2b
Schroder F.
Sinnwell V.
Baumann H.
Kaib M.
Chem. Commun.
1996,
2139
2c
Schroder F.
Francke S.
Francke W.
Baumann H.
Kaib M.
Pasteels JM.
Daloze D.
Tetrahedron
1996,
52:
13539
2d
Schroder F.
Sinnwell V.
Baumann H.
Kaib M.
Francke W.
Angew. Chem.,
Int. Ed. Engl.
1997,
36:
77
3a
Toyooka N.
Kobayashi S.
Zhou D.
Tsuneki H.
Wada T.
Sakai H.
Nemoto H.
Sasaoka T.
Garraffo HM.
Spande TF.
Daly JW.
Bioorg.
Med. Chem. Lett.
2007,
17:
5872
3b
Kobayashi S.
Toyooka N.
Zhou D.
Tsuneki H.
Wada T.
Sasaoka T.
Sakai H.
Nemoto H.
Garraffo HM.
Spande TF.
Daly JW.
Beilstein J. Org. Chem.
2007,
3:
30
3c
Tsuneki H.
You Y.
Toyooka N.
Kagawa S.
Kobayashi S.
Sasaoka T.
Nemoto H.
Kimura I.
Dani JA.
Mol.
Pharmacol.
2004,
66:
1061
4a
Michael JP.
Beilstein J. Org.
Chem.
2007,
3:
27
4b
Michael JP.
Nat. Prod. Rep.
2007,
24:
191
5
Jones TH.
Voegtle HL.
Miras HM.
Weatherford RG.
Spande TF.
Garraffo HM.
Daly JW.
Davidson DW.
Snelling RR.
J.
Nat. Prod.
2007,
70:
160
6a
Toyooka N.
Tsuneki H.
Kobayashi S.
Zhou D.
Kawasaki M.
Kimura I.
Sasaoka T.
Nemoto H.
Curr. Chem.
Biol.
2007,
1:
97
6b
Toyooka N.
Tsuneki H.
Nemoto H.
Yuki
Gosei Kagaku Kyokaishi
2006,
64:
49
6c
Toyooka N.
Nemoto H.
New Methods
for the Asymmetric Synthesis of Nitrogen Heterocycles
Vicario JL.
Research
Signpost;
India:
2005.
p.149-163
6d
Toyooka N.
Nemoto H.
Recent
Research Developments in Organic Chemistry
Vol.
6:
Pandalai SG.
Transworld
Research Network;
Trivandrum India:
2002.
p.611-624
7
Brenneman JB.
Machauer R.
Martin SF.
Tetrahedron
2004,
60:
7301
8
Schwab P.
France MB.
Ziller JW.
Grubbs RH.
Angew.
Chem., Int. Ed. Engl.
1995,
34:
2039
9
Spectral Data of
1
IR (neat): 3482, 2956, 2872, 1513, 1457, 1378, 1234,
1130, 1054, 970, 826 cm-¹. ¹H
NMR (500 MHz, CDCl3): δ = 0.90 (3 H,
t, J = 7.2
Hz), 0.91 (3 H, t, J = 7.2
Hz), 1.17-1.49 (11 H, br m), 1.53-1.62 (4 H, m),
1.68-1.86 (3 H, m), 2.25 (1 H, t-like, J = 9.8
Hz), 2.40 (1 H, m), 2.75 (1 H, t-like, J = 8.5 Hz),
3.03 (1 H, d, J = 10.3
Hz), 3.74 (1 H, d, J = 9.8
Hz). ¹³C NMR (75 MHz, CDCl3): δ = 14.27
(q), 14.50 (q), 19.16 (t), 22.98 (t), 25.92 (t), 26.67 (t), 28.75
(t), 28.98 (t), 32.18 (t), 37.83 (t), 39.43 (t), 60.43 (d), 64.07
(d), 65.45 (d), 70.06 (d). MS: m/z (%) = 239 [M+],
196 (100). HRMS: m/z calcd for C15H29ON:
239.2103; found: 239.2121. [α]D
²6 -48.92 (c 0.62, CHCl3).
10
Spectral Data
of 9
Mp 39-40 ˚C. IR (KBr): 3343,
2955, 2933, 2859, 2784, 1466, 1378, 1259, 1207, 1194, 1158, 1123,
1062, 1019 cm-¹. ¹H
NMR (500 MHz, CDCl3): δ = 0.89 (3 H,
t, J = 7.3
Hz), 0.91 (3 H, t, J = 7.3
Hz), 1.18-1.36 (8 H, m), 1.42 (1 H, m), 1.45-1.64
(4 H, m), 1.80-1.84 (2 H, m), 1.92-2.08 (3 H,
m), 2.15 (1 H, br), 2.66 (1 H, t-like, J = 8.5
Hz), 3.43 (1 H, br). ¹³C NMR (75 MHz,
CDCl3): δ = 14.24 (q), 14.53 (q), 19.55 (t),
22.88 (t), 27.91 (t), 29.22 (t), 29.68 (t), 30.87 (t), 34.08 (t),
37.51 (t), 39.37 (t), 62.10 (d), 63.75 (d), 72.87 (d), 73.05 (d).
MS: m/z (%) = 239 [M+],
182 (100). HRMS: m/z calcd for C15H29ON:
239.2103; found: 239.2127; [α]D
²6 -53.55 (c 1.05, CHCl3).
11 For proof of identity of (-)-1 with the natural ant alkaloid (10a, see ref. 5), a Shimadzu QP-2010 GC/MS
equipped with an RTX-5 column (30 m × 0.25
mm i.d.) was used employing a program of 60 ˚C to 250 ˚C
at 10 ˚C/min. Here, both synthetic (-)-1 and natural product 10a coeluted
and had identical mass spectra. Synthetic (-)-1 also had a retention time and mass spectrum
identical to the first eluting isomer, (±)-1,
of the mixture of diastereomers synthesized in a nonstereoselective
manner by Jones et al.5 For the determination of the
absolute configuration of 10a, an HP 5890
GC with flame-ionization detection was used with He carrier gas
and a head pressure of 20 psi. This was fitted with a chiral permethylated β-cyclodextrin
column (SGE, 30 m × 0.22 mm
i.d., 0.25 µm film thickness) operated with a program of
100 ˚C at a rate of 1 ˚C/min. Using these conditions,
the Myrmicaria melanogaster ant hydroxyindolizidine 10a and (-)-1 each
coeluted with the slightly more slowly eluting enantiomer (156.5 ˚C)
of the (±)-1 racemate present
in Jones’ synthetic mixture, whereas the (+)-1 enantiomer, from Jones’ synthetic
mixture eluted at 156.0 ˚C.
12
Toyooka N.
Zhou D.
Nemoto H.
J.
Org Chem.
2008, DOI: 10.1021/jo800593n