Minim Invasive Neurosurg 2008; 51(4): 225-230
DOI: 10.1055/s-2008-1080915
Original Article

© Georg Thieme Verlag KG Stuttgart · New York

Percutaneous Axial Lumbar Interbody Fusion (AxiaLIF) of the L5-S1 Segment: Initial Clinical and Radiographic Experience

H. E. Aryan 1 , 3 , C. B. Newman 3 , J. J. Gold 3 , F. L. Acosta Jr. 1 , C. Coover 3 , C. P. Ames 1 , 2
  • 1Department of Neurosurgery, University of California, San Francisco, California (UCSF), USA
  • 2UCSF Spine Center, San Francisco, California, USA
  • 3Division of Neurosurgery, University of California, San Diego, California (UCSD), USA
Further Information

Publication History

Publication Date:
05 August 2008 (online)

Abstract

Introduction: Anterior access to the L5-S1 disc space for interbody fusion can be technically challenging, frequently requiring the use of an approach surgeon for adequate exposure. We reviewed our experience with a novel minimally invasive technique for L5-S1 interbody fusion that exploits the presacral space and its relative dearth of critical structures.

Methods: 35 patients (20 F:15 M, mean age 54 years) were included in this analysis. Average follow-up was 17.5 months. Back pain was secondary to lumbar degenerative disc disease (DDD), degenerative lumbar scoliosis, or lytic spondylolisthesis. All patients had radiographic evidence of L5-S1 degeneration and underwent percutaneous paracoccygeal axial fluoroscopically-guided interbody fusion (axiaLIF) with cage, local bone autograft, and rhBMP.

Results: Mean operative time for the L5-S1 axiaLIF procedure was 42 minutes. Twenty-one patients underwent axiaLIF followed by percutaneous L5-S1 pedicle screw-rod fixation. Two patients underwent axiaLIF followed by percutaneous L4-L5 extreme lateral interbody fusion (XLIF) and posterior instrumentation. Ten patients had a stand-alone procedure. Unfavorable anatomy precluded access to the L5-S1 disc space during open lumbar interbody fusion in 2 patients who subsequently underwent axiaLIF at this level as part of a large construct. Thirty-two patients (91%) had radiographic evidence of stable L5-S1 interbody cage placement and fusion at the last follow-up.

Conclusions: The percutaneous paracoccygeal approach to the L5-S1 interspace provides a minimally invasive corridor through which discectomy and interbody fusion can safely be performed. It can be used alone or in combination with minimally invasive or traditional open fusion procedures. It may provide an alternative route of access to the L5-S1 interspace in those patients who may have unfavorable anatomy for or contraindications to the traditional open anterior approach to this level.

References

  • 1 Fritzell P, Hagg O, Wessberg P, Nordwall A. Lumbar fusion versus nonsurgical treatment for chronic low back pain.  Spine. 2001;  26 2521-2532
  • 2 Gepstein R, Werner D, Shabat S, Folman Y. Percutaneous posterior lumbar interbody fusion using the B-twin expandable spinal spacer.  Minim Invas Neurosurg. 2005;  48 330-333
  • 3 Gumbs AA, Hanan S, Yue JJ, Shah RV, Sumpio B. Revision open anterior approaches for spine procedures.  The Spine Journal. 2007;  7 280-285
  • 4 Meyers AM, Noonan KJ, Mih AD, Idler R. Salvage reconstruction with vascularized fibular strut graft fusion using a posterior approach in the treatment of severe spondylolisthesis.  Spine. 2001;  26 1820-1824
  • 5 Regan JJ, Yuan H, MacAfee PC. Laparoscopic fusion of the lumbar spine: Minimally invasive spine surgery. A prospective multicenter study evaluating open and laparoscopic fusion.  Spine. 1999;  24 402-411
  • 6 Ledet EH, Carl AL, Cragg A. Novel lumbosacral axial fixation techniques.  Expert Rev Med Devices. 2006;  3 327-334
  • 7 MacMillan M, Fessler RG, Gillespy M, Montgomery WJ. Percutaneous lumbosacral fixation and fusion. Anatomic study and two-year experience with a new method.  Neurosurg Clin N Am. 1996;  7 99-106
  • 8 Marotta N, Cosar M, Pimenta L, Khoo LT. A novel minimally-invasive presacral approach and instrumentation technique for anterior L5-S1 intervertebral discectomy and fusion: technical description and case presentation.  Neurosurg Focus. 2006;  20 ((E9))
  • 9 Mathews HH. Percutaneous interbody fusion.  Orthop Clin North Am. 1998;  1998 ((29))
  • 10 MacAfee PC, Regan JJ, Geis WP, Fedder IL. Minimally-invasive retroperitoneal approach to the lumbar spine. Emphasis on the lateral BAK.  Spine. 1998;  23 1476-1484
  • 11 Muhlbauer M, Pfisterer W, Eyb R, Knosp E. Minimally-invasive retroperitoneal approach for lumbar corpectomy and anterior reconstruction. Technical note.  J Neurosurg. 2000;  93 161-167
  • 12 O’Dowd JK. Laparoscopic lumbar spine surgery.  Eur Spine J. 2000;  9 3-7
  • 13 Olinger A, Hildebrandt V, Mutschler W, Menger MD. First clinical experience with and endoscopic retroperitoneal approach for anterior fusion of lumbar spine fractures from levels T12-L5.  Surg Endosc. 1999;  13 1215-1219
  • 14 Yuan H, Day TF, Albert TJ, Morrison WB, Pimenta L, Cragg A, Weinstein M. Anatomy of the percutaneous presacral space for a novel fusion technique.  J Spinal Disord Tech. 2006;  19 237-241
  • 15 Leu HF, Hauser RK. Percutaneous endoscopic lumbar spine fusion.  Neurosurg Clin N Am. 1996;  7 107-117
  • 16 Thalgott JS, Chin AK, Ameriks JA, Jordan FT, Giuffre JM, Fritts K, Timlin M. Minimally invasive 360 degrees instrumented lumbar fusion.  Eur Spine J. 2000;  9 51-56
  • 17 Cragg A, Carl A, Casteneda F, Dickman C, Guterman L, Oliveira C. New percutaneous access method for minimally-invasive anterior lumbosacral surgery.  J Spinal Disord Tech. 2004;  17 21-28
  • 18 Ledet EH, Tymeson MP, Salerno S, Carl AL, Cragg A. Biomechanical evaluation of a novel lumbosacral fixation device.  J Biomech Eng. 2005;  127 929-933
  • 19 Fritsch H, Hotzinger H. Tomographical anatomy of the pelvis, visceral pelvic connective tissue and its compartments.  Clin Anat. 1995;  1995 ((8))
  • 20 Samudrala S, Khoo LT, Rhim SC, Fessler RG. Complications during anterior surgery of the lumbar spine.  Neurosurg Focus. 1999;  7 ((E9))
  • 21 Fritzell P, Hagg O, Wessberg P, Nordwall A. Chronic low back pain and fusion: a comparison of three surgical techniques.  Spine. 2002;  27 1131-1141
  • 22 Glassman S, Gornet MF, Branch C, Polly DJ, Peloza J, Schwender JD, Carreon L. MOS short form 36 and Oswestry disability index outcomes in lumbar fusion: a multicenter experience.  The Spine Journal. 2000;  6 21-26
  • 23 Hackenberg L, Halm H, Bullmann V, Vieth V, Schneider M, Liljenqvist U. Transforaminal lumbar interbody fusion: a safe technique with satisfactory three to five year results.  Eur Spine J. 2005;  14 551-558
  • 24 Holly LT, Schwender JD, Rouben DP, Foley KT. Minimally-invasive transforaminal lumbar interbody fusion: indications, technique and complications.  Neurosurg Focus. 2006;  20 ((E6))
  • 25 Kanayama M, Cunningham BW, Haggerty CJ, Abumi K, Kaneda K, MacAfee PC. In vitro biomechanical investigation of the stability and stress-shielding effect of lumbar interbody fusion devices.  J Neurosurg. 2000;  93 259-265
  • 26 Lim TH, An H, Hong JH, Ahn JY, You JW, Eck J, MacGrady LM. Biomechanical evaluation of anterior and posterior fixations in an unstable calf spine model.  Spine. 1997;  22 261-266

Correspondence

C. B. NewmanMD 

Division of Neurosurgery

University of California

San Diego Medical Center

200 West Arbor Drive

Maicode 8893

San Diego

92103 California

USA

Phone: +1/619/543/55 40

Fax: +1/619/543/87 69

Email: cbnewman@ucsd.edu