Semin Respir Crit Care Med 2008; 29(4): 384-394
DOI: 10.1055/s-2008-1081281
© Thieme Medical Publishers

Microwave Ablation in the Treatment of Primary Lung Tumors

Elliot J. Wasser1 , Damian E. Dupuy1
  • 1Department of Diagnostic Imaging, Rhode Island Hospital, Providence, Rhode Island
Further Information

Publication History

Publication Date:
23 July 2008 (online)

ABSTRACT

Recent years have witnessed the refinement and significant growth of several new, minimally invasive approaches for the nonsurgical treatment of primary lung malignancies. For select patients, these technologies offer an attractive treatment option given their availability in the outpatient setting and low associated morbidity and mortality. Microwave ablation represents the most recent addition to the growing armamentarium of available ablative technologies. Administered in a manner similar to radiofrequency ablation, the lung tumor is localized under imaging guidance, and a microwave antenna is placed directly into the tumor bed. In contrast to existing thermoablative technologies, however, microwave treatment offers several key theoretical advantages. These include consistently higher intratumoral temperatures, larger ablation volumes, reduced treatment times, and improved convection profile. As a nascent technology, efficacy and outcomes data for microwave ablation of pulmonary malignancies remain relatively lacking compared with other thermoablative techniques; however, early trials have demonstrated promising results. It is hoped that further refinements in the clinical application of this technology will continue to improve the care of patients with lung cancer.

REFERENCES

  • 1 American Cancer Society .Cancer Facts and Figures 2006. Atlanta; American Cancer Society 2006: 13-15
  • 2 Jemal A, Siegel R, Ward E et al.. Cancer statistics 2007.  CA Cancer J Clin. 2007;  57 43-66
  • 3 Gauden S, Ramsay J, Tripcony L. The curative treatment by radiotherapy alone of stage I non-small cell carcinoma of the lung.  Chest. 1995;  108 1278-1282
  • 4 Ginsberg R J, Hill L D, Eagen R T et al.. Modern thirty-day operative mortality for surgical resections in lung cancer.  J Thorac Cardiovasc Surg. 1983;  86 654-658
  • 5 Ghosh S, Sujendran V, Alexiou C, Beggs L, Beggs D. Long-term results of surgery versus continuous hyperfractionated accelerated radiotherapy (chart) in patients aged > 70 years with stage 1 non-small cell lung cancer.  Eur J Cardiothorac Surg. 2003;  24 1002-1007
  • 6 National Cancer Institute .Non-small cell lung cancer: treatment. National Cancer Institute Guidelines for Health Professionals. Retrieved on October 8, 2007, from http://www.cancer.gov/cancertopics/pdq/treatment/non-small-cell-lung/healthprofessional
  • 7 Morita K, Fuwa N, Suzuki Y et al.. Radical radiotherapy for medically inoperable non-small cell lung cancer in clinical stage I: a retrospective analysis of 149 patients.  Radiother Oncol. 1997;  42 31-36
  • 8 Martini N, Bains M S, Burt M E et al.. Incidence of local recurrence and second primary tumors in resected stage I lung cancer.  J Thorac Cardiovasc Surg. 1995;  109 120-129
  • 9 Lagerwaard F J, Haasbeek C J, Smit E F, Slotman B J, Senan S. Outcomes of risk-adapted fractionated stereotactic radiotherapy for stage I non-small-cell lung cancer.  Int J Radiat Oncol Biol Physiol. 2007; 
  • 10 Giovanella B C, Lohman W A, Heidelberger C. Effects of elevated temperatures and drugs on the viability of l1210 leukemia cells.  Cancer Res. 1970;  30 1623-1631
  • 11 Dupuy D E, Mayo-Smith W W, Abbott G F, DiPetrillo T. Clinical applications of radio-frequency tumor ablation in the thorax.  Radiographics. 2002;  22(Spec No) S259-269
  • 12 Dupuy D E, Goldberg S N. Image-guided radiofrequency tumor ablation: challenges and opportunities—part II.  J Vasc Interv Radiol. 2001;  12 1135-1148
  • 13 Goldberg S N, Dupuy D E. Image-guided radiofrequency tumor ablation: challenges and opportunities—part I.  J Vasc Interv Radiol. 2001;  12 1021-1032
  • 14 Simon C J, Dupuy D E, Mayo-Smith W W. Microwave ablation: principles and applications.  Radiographics. 2005;  25(Suppl 1) S69-S83
  • 15 Haemmerich D, Laeseke P F. Thermal tumour ablation: devices, clinical applications and future directions.  Int J Hyperthermia. 2005;  21 755-760
  • 16 Skinner M G, Iizuka M N, Kolios M C, Sherar M D. A theoretical comparison of energy sources—microwave, ultrasound and laser—for interstitial thermal therapy.  Phys Med Biol. 1998;  43 3535-3547
  • 17 Wright A S, Lee Jr F T, Mahvi D M. Hepatic microwave ablation with multiple antennae results in synergistically larger zones of coagulation necrosis.  Ann Surg Oncol. 2003;  10 275-283
  • 18 Goldberg S N, Grassi C J, Cardella J F et al.. Image-guided tumor ablation: standardization of terminology and reporting criteria.  Radiology. 2005;  235 728-739
  • 19 Shibata T, Iimuro Y, Yamamoto Y et al.. Small hepatocellular carcinoma: comparison of radio-frequency ablation and percutaneous microwave coagulation therapy.  Radiology. 2002;  223 331-337
  • 20 Goldberg S N, Gazelle G S, Halpern E F et al.. Radiofrequency tissue ablation: importance of local temperature along the electrode tip exposure in determining lesion shape and size.  Acad Radiol. 1996;  3 212-218
  • 21 Goldberg S N, Gazelle G S, Compton C C, Mueller P R, Tanabe K K. Treatment of intrahepatic malignancy with radiofrequency ablation: radiologic–pathologic correlation.  Cancer. 2000;  88 2452-2463
  • 22 Goldberg S N, Gazelle G S, Compton C C, McLoud T C. Radiofrequency tissue ablation in the rabbit lung: efficacy and complications.  Acad Radiol. 1995;  2 776-784
  • 23 Wolf F J, Grand D J, Machan J T, Dipetrillo T A, Mayo-Smith W W, Dupuy D E. Microwave ablation of lung malignancies: effectiveness, CT findings, and safety in 50 patients.  Radiology. 2008;  247 871-879
  • 24 Grieco C A, Simon C J, Mayo-Smith W W et al.. Image-guided percutaneous thermal ablation for the palliative treatment of chest wall masses.  Am J Clin Oncol. 2007;  30 361-367
  • 25 Gillams A R, Lees W R. Analysis of the factors associated with radiofrequency ablation-induced pneumothorax.  Clin Radiol. 2007;  62 639-644
  • 26 El-Sherif A, Luketich J D, Landreneau R J, Fernando H C. New therapeutic approaches for early stage non-small cell lung cancer.  Surg Oncol. 2005;  14 27-32
  • 27 Lee J M, Jin G Y, Goldberg S N et al.. Percutaneous radiofrequency ablation for inoperable non-small cell lung cancer and metastases: preliminary report.  Radiology. 2004;  230 125-134
  • 28 Dodd III G D, Napier D, Schoolfield J D, Hubbard L. Percutaneous radiofrequency ablation of hepatic tumors: postablation syndrome.  AJR Am J Roentgenol. 2005;  185 51-57
  • 29 He W, Hu X, Wu D F et al.. Ultrasonography-guided percutaneous microwave ablation of peripheral lung cancer.  Clin Imaging. 2006;  30 234-241
  • 30 Yamamoto A, Nakamura K, Matsuoka T et al.. Radiofrequency ablation in a porcine lung model: correlation between ct and histopathologic findings.  AJR Am J Roentgenol. 2005;  185 1299-1306
  • 31 Jin G Y, Lee J M, Lee Y C, Han Y M, Lim Y S. Primary and secondary lung malignancies treated with percutaneous radiofrequency ablation: evaluation with follow-up helical CT.  AJR Am J Roentgenol. 2004;  183 1013-1020
  • 32 Nielsen O S, Munro A J, Tannock I F. Bone metastases: pathophysiology and management policy.  J Clin Oncol. 1991;  9 509-524
  • 33 Cleeland C S, Gonin R, Hatfield A K et al.. Pain and its treatment in outpatients with metastatic cancer.  N Engl J Med. 1994;  330 592-596
  • 34 Zech D F, Grond S, Lynch J, Hertel D, Lehmann K A. Validation of world health organization guidelines for cancer pain relief: a 10-year prospective study.  Pain. 1995;  63 65-76
  • 35 Janjan N A. Radiation for bone metastases: conventional techniques and the role of systemic radiopharmaceuticals.  Cancer. 1997;  80 1628-1645
  • 36 Grieco C A, Simon C J, Mayo-Smith W W et al.. Image-guided percutaneous thermal ablation for the palliative treatment of chest wall masses.  Am J Clin Oncol. 2007;  30 361-367
  • 37 Woodward R M, Brown M L, Stewart S T, Cronin K A, Cutler D M. The value of medical interventions for lung cancer in the elderly: results from SEER-CMHSF.  Cancer. 2007;  110 2511-2518
  • 38 Wright A S, Sampson L A, Warner T F, Mahvi D M, Lee Jr F T. Radiofrequency versus microwave ablation in a hepatic porcine model.  Radiology. 2005;  236 132-139
  • 39 Dupuy D E, DiPetrillo T, Gandhi S et al.. Radiofrequency ablation followed by conventional radiotherapy for medically inoperable stage I non-small cell lung cancer.  Chest. 2006;  129 738-745
  • 40 den Brok M H, Sutmuller R P, Nierkens S et al.. Synergy between in situ cryoablation and TLR9 stimulation results in a highly effective in vivo dendritic cell vaccine.  Cancer Res. 2006;  66 7285-7292

Damian E DupuyM.D. 

Department of Diagnostic Imaging, Rhode Island Hospital

593 Eddy St., Providence, RI 02903

Email: ddupuy@lifespan.org