Planta Med 2008; 74(13): 1548-1559
DOI: 10.1055/s-2008-1081296
Review
© Georg Thieme Verlag KG Stuttgart · New York

Phytochemicals as Protectors Against Ultraviolet Radiation: Versatility of Effects and Mechanisms

Albena T. Dinkova-Kostova1
  • 1Biomedical Research Centre, Ninewells Hospital and Medical School, University of Dundee, Scotland, UK and Department of Pharmacology and Molecular Sciences and Department of Medicine, Johns Hopkins University, Baltimore, Maryland, USA
Further Information

Publication History

Received: March 26, 2008 Revised: May 16, 2008

Accepted: May 22, 2008

Publication Date:
11 August 2008 (online)

Abstract

Ultraviolet (UV) radiation is one of the most abundant carcinogens in our environment, and the development of non-melanoma skin cancers, the most common type of human malignancy worldwide, represents one of the major consequences of excessive exposure. Because of growing concerns that the level of UV radiation is increasing as a result of depletion of the stratospheric ozone and climate change, the development of strategies for protection of the skin is an urgent need. Many phytochemicals that belong to various families of secondary metabolites, such as alkaloids (caffeine, sanguinarine), flavonoids [(−)-epigallocatechin 3-gallate, genistein, silibinin], carotenoids (β-carotene, lycopene), and isothiocyanates (sulforaphane), offer exciting platforms for the development of such protective strategies. These phytochemicals have been consumed by humans for many centuries as part of plant-rich diets and are presumed to be of low toxicity, an essential requirement for a chemoprotective agent. Mechanistically, they affect multiple signalling pathways and protect against UV radiation-inflicted damage by their ability to act as direct and indirect antioxidants, as well as anti-inflammatory and immunomodulatory agents. Such ”pluripotent character” is a critical prerequisite for an agent that is designed to counteract the multiple damaging effects of UV radiation. Especially attractive are inducers of the Keap1/Nrf2/ARE pathway, which controls the gene expression of proteins whose activation leads to enhanced protection against oxidants and electrophiles. Such protection is comprehensive, long-lasting, and unlikely to cause pro-oxidant effects or interfere with the synthesis of vitamin D.

Abbreviations

AP-1:activator protein 1

ARE:antioxidant response element

COX-2:cyclooxygenase 2

EGG:epigallocatechin 3-gallate

EGF:epidermal growth factor

GSH:glutathione

iNOS:inducible nitric oxide synthase

Keap1:Kelch-like ECH-associated protein 1

IL:inerleukin

MAPK:mitogen-activated protein kinase

MMP:matrix metalloprotease

NF-κB:nuclear factor-κB

NQO1:NAD(P)H:quinone oxidoreductase 1

Nrf2:nuclear factor-erythroid 2-related factor 2

ODC:ornithine decarobxylase

PCNA:proliferating cell nuclear antigen

ROS:reactive oxygen species

TPA:12-O-tetradecanoylphorbol 13-acetate

UV:ultraviolet

References

  • 1 Diffey B. Climate change, ozone depletion and the impact on ultraviolet exposure of human skin.  Phys Med Biol. 2004;  49 R1-11
  • 2 de Gruijl F R, Longstreth J, Norval M, Cullen A P, Slaper H, Kripke M L. et al . Health effects from stratospheric ozone depletion and interactions with climate change.  Photochem Photobiol Sci. 2003;  2 16-28
  • 3 Norval M, Cullen A P, de Gruijl F R, Longstreth J, Takizawa Y, Lucas R M. et al . The effects on human health from stratospheric ozone depletion and its interactions with climate change.  Photochem Photobiol Sci. 2007;  6 232-51
  • 4 Diffey B L. Solar ultraviolet radiation effects on biological systems.  Phys Med Biol. 1991;  36 299-328
  • 5 Diffey B L. What is light.  Photodermatol Photoimmunol Photomed. 2002;  18 68-74
  • 6 Sies H, Stahl W. Carotenoids and UV protection.  Photochem Photobiol Sci. 2004;  3 749-52
  • 7 Karran P, Attard N. Thiopurines in current medical practice: molecular mechanisms and contributions to therapy-related cancer.  Nat Rev Cancer. 2008;  8 24-36
  • 8 Mitchell D. Revisiting the photochemistry of solar UVA in human skin.  Proc Natl Acad Sci USA. 2006;  103 13 567-8
  • 9 Godar D E. UV doses worldwide.  Photochem Photobiol. 2005;  81 736-49
  • 10 Young R W. The family of sunlight-related eye diseases.  Optom Vis Sci. 1994;  71 125-44
  • 11 Alam M, Ratner D. Cutaneous squamous-cell carcinoma.  N Engl J Med. 2001;  344 975-83
  • 12 Diepgen T L, Mahler V. The epidemiology of skin cancer.  Br J Dermatol. 2002;  146 (Suppl 61) 1-6
  • 13 NIH publication No. 95 – 1564 1995
  • 14 van Steeg H, Kraemer K H. Xeroderma pigmentosum and the role of UV-induced DNA damage in skin cancer.  Mol Med Today. 1999;  5 86-94
  • 15 Setlow R B, Carrier W L. Pyrimidine dimers in ultraviolet-irradiated DNA′s.  J Mol Biol. 1966;  17 237-54
  • 16 Cadet J, Sage E, Douki T. Ultraviolet radiation-mediated damage to cellular DNA.  Mutat Res. 2005;  571 3-17
  • 17 Daya-Grosjean L, Sarasin A. UV-specific mutations of the human patched gene in basal cell carcinomas from normal individuals and xeroderma pigmentosum patients.  Mutat Res. 2000;  450 93-9
  • 18 Daya-Grosjean L, Dumaz N, Sarasin A. The specificity of p53 mutation spectra in sunlight induced human cancers.  J Photochem Photobiol B. 1995;  28 115-24
  • 19 Daya-Grosjean L, Robert C, Drougard C, Suarez H, Sarasin A. High mutation frequency in ras genes of skin tumors isolated from DNA repair deficient xeroderma pigmentosum patients.  Cancer Res. 1993;  53 1625-9
  • 20 Ziegler A, Jonason A S, Leffell D J, Simon J A, Sharma H W, Kimmelman J. et al . Sunburn and p53 in the onset of skin cancer.  Nature. 1994;  372 773-6
  • 21 Williams C, Pontén F, Ahmadian A, Ren Z P, Ling G, Rollman O. et al . Clones of normal keratinocytes and a variety of simultaneously present epidermal neoplastic lesions contain a multitude of p53 gene mutations in a xeroderma pigmentosum patient.  Cancer Res. 1998;  58 2449-55
  • 22 Au V, Madison S A. Effects of singlet oxygen on the extracellular matrix protein collagen: oxidation of the collagen crosslink histidinohydroxylysinonorleucine and histidine.  Arch Biochem Biophys. 2000;  384 133-42
  • 23 Mouret S, Baudouin C, Charveron M, Favier A, Cadet J, Douki T. Cyclobutane pyrimidine dimers are predominant DNA lesions in whole human skin exposed to UVA radiation.  Proc Natl Acad Sci USA. 2006;  103 13 765-70
  • 24 Nijhof J G, van Pelt C, Mulder A A, Mitchell D L, Mullenders L H, de Gruijl F R. Epidermal stem and progenitor cells in murine epidermis accumulate UV damage despite NER proficiency.  Carcinogenesis. 2007;  28 792-800
  • 25 Nijhof J G, Mulder A M, Speksnijder E N, Hoogervorst E M, Mullenders L H, de Gruijl F R. Growth stimulation of UV-induced DNA damage retaining epidermal basal cells gives rise to clusters of p53 overexpressing cells.  DNA Repair (Amst). 2007;  6 1642-50
  • 26 Melnikova V O, Ananthaswamy H N. Cellular and molecular events leading to the development of skin cancer.  Mutat Res. 2005;  571 91-106
  • 27 Klotz L O, Pellieux C, Briviba K, Pierlot C, Aubry J M, Sies H. Mitogen-activated protein kinase (p38-, JNK-, ERK-) activation pattern induced by extracellular and intracellular singlet oxygen and UVA.  Eur J Biochem. 1999;  260 917-22
  • 28 Silvers A L, Bachelor M A, Bowden G T. The role of JNK and p38 MAPK activities in UVA-induced signaling pathways leading to AP-1 activation and c-Fos expression.  Neoplasia. 2003;  5 319-29
  • 29 Bachelor M A, Bowden G T. UVA-mediated activation of signaling pathways involved in skin tumor promotion and progression.  Semin Cancer Biol. 2004;  14 131-8
  • 30 Cooper S J, Bowden G T. Ultraviolet B regulation of transcription factor families: roles of nuclear factor-kappa B (NF-κB) and activator protein-1 (AP-1) in UVB-induced skin carcinogenesis.  Curr Cancer Drug Targets. 2007;  7 325-34
  • 31 Kripke M L. Immunological unresponsiveness induced by ultraviolet radiation.  Immunol Rev. 1984;  80 87-102
  • 32 Halliday G M. Inflammation, gene mutation and photoimmunosuppression in response to UVR-induced oxidative damage contributes to photocarcinogenesis.  Mutat Res. 2005;  571 107-20
  • 33 Simon J C, Krutmann J, Elmets C A, Bergstresser P R, Cruz J r. PD. Ultraviolet B-irradiated antigen-presenting cells display altered accessory signaling for T-cell activation: relevance to immune responses initiated in skin.  J Invest Dermatol. 1992;  98 66S-9S
  • 34 Vermeer M, Streilein J W. Ultraviolet B light-induced alterations in epidermal Langerhans cells are mediated in part by tumor necrosis factor-alpha.  Photodermatol Photoimmunol Photomed. 1990;  7 258-65
  • 35 Chung H T, Burnham D K, Robertson B, Roberts L K, Daynes R A. Involvement of prostaglandins in the immune alterations caused by the exposure of mice to ultraviolet radiation.  J Immunol. 1986;  137 2478-84
  • 36 Feldmeyer L, Keller M, Niklaus G, Hohl D, Werner S, Beer H D. The inflammasome mediates UVB-induced activation and secretion of interleukin-1β by keratinocytes.  Curr Biol. 2007;  17 1140-5
  • 37 Schwarz T, Luger T A. Effect of UV irradiation on epidermal cell cytokine production.  J Photochem Photobiol B. 1989;  4 1-13
  • 38 Chung J H, Youn S H, Koh W S, Eun H C, Cho K H, Park K C. et al . Ultraviolet B irradiation-enhanced interleukin (IL)-6 production and mRNA expression are mediated by IL-1α in cultured human keratinocytes.  J Invest Dermatol. 1996;  106 715-20
  • 39 Yano S, Banno T, Walsh R, Blumenberg M. Transcriptional responses of human epidermal keratinocytes to cytokine interleukin-1.  J Cell Physiol. 2008;  214 1-13
  • 40 Kondo S, Kono T, Sauder D N, McKenzie R C. IL-8 gene expression and production in human keratinocytes and their modulation by UVB.  J Invest Dermatol. 1993;  101 690-4
  • 41 Schwarz A, Schwarz T. Molecular determinants of UV-induced immunosuppression.  Exp Dermatol. 2002;  11 (Suppl 1) 9-12
  • 42 Loser K, Apelt J, Voskort M, Mohaupt M, Balkow S, Schwarz T. et al . IL-10 controls ultraviolet-induced carcinogenesis in mice.  J Immunol. 2007;  179 365-71
  • 43 Schwarz A, Grabbe S, Aragane Y, Sandkuhl K, Riemann H, Luger T A. et al . Interleukin-12 prevents ultraviolet B-induced local immunosuppression and overcomes UVB-induced tolerance.  J Invest Dermatol. 1996;  106 1187-91
  • 44 Riemann H, Schwarz A, Grabbe S, Aragane Y, Luger T A, Wysocka M. et al . Neutralization of IL-12 in vivo prevents induction of contact hypersensitivity and induces hapten-specific tolerance.  J Immunol. 1996;  156 1799-803
  • 45 Schwarz A, Ständer S, Berneburg M, Böhm M, Kulms D, van Steeg H. et al . Interleukin-12 suppresses ultraviolet radiation-induced apoptosis by inducing DNA repair.  Nat Cell Biol. 2002;  4 26-31
  • 46 Maeda A, Schneider S W, Kojima M, Beissert S, Schwarz T, Schwarz A. Enhanced photocarcinogenesis in interleukin-12-deficient mice.  Cancer Res. 2006;  66 2962-9
  • 47 Andersen P H, Abrams K, Bjerring P, Maibach H. A time-correlation study of ultraviolet B-induced erythema measured by reflectance spectroscopy and laser Doppler flowmetry.  Photodermatol Photoimmunol Photomed. 1991;  8 123-8
  • 48 Andersen P H, Abrams K, Maibach H. Ultraviolet B dose-dependent inflammation in humans: a reflectance spectroscopic and laser Doppler flowmetric study using topical pharmacologic antagonists on irradiated skin.  Photodermatol Photoimmunol Photomed. 1992;  9 17-23
  • 49 Andersen P H, Bjerring P. Spectral reflectance of human skin in vivo.  Photodermatol Photoimmunol Photomed. 1990;  7 5-12
  • 50 Wagner J K, Jovel C, Norton H L, Parra E J, Shriver M D. Comparing quantitative measures of erythema, pigmentation and skin response using reflectometry.  Pigment Cell Res. 2002;  15 379-84
  • 51 O’Donovan P, Perrett C M, Zhang X, Montaner B, Xu Y Z, Harwood C A. et al . Azathioprine and UVA light generate mutagenic oxidative DNA damage.  Science. 2005;  309 1871-4
  • 52 Young A R, Sheehan J M, Chadwick C A, Potten C S. Protection by ultraviolet A and B sunscreens against in situ dipyrimidine photolesions in human epidermis is comparable to protection against sunburn.  J Invest Dermatol. 2000;  115 37-41
  • 53 Fitzpatrick T B. The validity and practicality of sun-reactive skin types I through VI.  Arch Dermatol. 1988;  124 869-71
  • 54 Sies H, Stahl W. Nutritional protection against skin damage from sunlight.  Annu Rev Nutr. 2004;  24 173-200
  • 55 Ziegler J, Facchini P J. Alkaloid biosynthesis: metabolism and trafficking. Annu Rev Plant Biol, in press
  • 56 Zajdela F, Latarjet R. Effect inhibiteurs de caffeine sur l’induction de cancers par les rayons ultraviolet chex la souris.  C R Acad Sci Hebd Seances Acad Sci D.. 1973;  277 1073-6
  • 57 Zajdela F, Latarjet R. Inhibition of skin carcinogenesis in vivo by caffeine and other agents.  Natl Cancer Inst Monogr. 1978;  50 33-40
  • 58 Bowden G T, Giesselbach B, Fusenig N E. Postreplication repair of DNA in ultraviolet light-irradiated normal and malignancy transformed mouse epidermal cell cultures.  Cancer Res. 1978;  38 2709-18
  • 59 Bowden G T, Fusenig N E. Caffeine inhibition of postreplication repair of UV-damaged DNA in mouse cells.  Chem Biol Interact. 1980;  33 101-13
  • 60 Lou Y R, Lu Y P, Xie J G, Huang M T, Conney A H. Effects of oral administration of tea, decaffeinated tea, and caffeine on the formation and growth of tumors in high-risk SKH-1 mice previously treated with ultraviolet B light.  Nutr Cancer. 1999;  33 146-53
  • 61 Lu Y P, Lou Y R, Liao J, Xie J G, Peng Q Y, Yang C S. et al . Administration of green tea or caffeine enhances the disappearance of UVB-induced patches of mutant p53 positive epidermal cells in SKH-1 mice.  Carcinogenesis. 2005;  26 1465-72
  • 62 Lu Y P, Lou Y R, Lin Y, Shih W J, Huang M T, Yang C S. et al . Inhibitory effects of orally administered green tea, black tea, and caffeine on skin carcinogenesis in mice previously treated with ultraviolet B light (high-risk mice): relationship to decreased tissue fat.  Cancer Res. 2001;  61 5002-9
  • 63 Lu Y P, Lou Y R, Peng Q Y, Xie J G, Nghiem P, Conney A H. Effect of caffeine on the ATR/Chk1 pathway in the epidermis of UVB-irradiated mice.  Cancer Res. 2008;  68 2523-9
  • 64 Lu Y P, Lou Y R, Nolan B, Peng Q Y, Xie J G, Wagner G C. et al . Stimulatory effect of voluntary exercise or fat removal (partial lipectomy) on apoptosis in the skin of UVB light-irradiated mice.  Proc Natl Acad Sci USA. 2006;  103 16 301-6
  • 65 Lu Y P, Nolan B, Lou Y R, Peng Q Y, Wagner G C, Conney A H. Voluntary exercise together with oral caffeine markedly stimulates UVB light-induced apoptosis and decreases tissue fat in SKH-1 mice.  Proc Natl Acad Sci USA. 2007;  104 12 936-41
  • 66 Lu Y P, Lou Y R, Xie J G, Peng Q Y, Liao J, Yang C S. et al . Topical applications of caffeine or (–)-epigallocatechin gallate (EGCG) inhibit carcinogenesis and selectively increase apoptosis in UVB-induced skin tumors in mice.  Proc Natl Acad Sci USA. 2002;  99 12 455-60
  • 67 Conney A H, Kramata P, Lou Y R, Lu Y P. Effect of caffeine on UVB-induced carcinogenesis, apoptosis, and the elimination of UVB-induced patches of p53 mutant epidermal cells in SKH-1 mice.  Photochem Photobiol. 2008;  84 330-8
  • 68 Koo S W, Hirakawa S, Fujii S, Kawasumi M, Nghiem P. Protection from photodamage by topical application of caffeine after ultraviolet irradiation.  Br J Dermatol. 2007;  156 957-64
  • 69 Lu Y P, Lou Y R, Xie J G, Peng Q Y, Zhou S, Lin Y. et al . Caffeine and caffeine sodium benzoate have a sunscreen effect, enhance UVB-induced apoptosis, and inhibit UVB-induced skin carcinogenesis in SKH-1 mice.  Carcinogenesis. 2007;  28 199-206
  • 70 Conney A H, Zhou S, Lee M J, Xie J G, Yang C S, Lou Y R. et al . Stimulatory effect of oral administration of tea, coffee or caffeine on UVB-induced apoptosis in the epidermis of SKH-1 mice.  Toxicol Appl Pharmacol. 2007;  224 209-13
  • 71 Rogozin E A, Lee K W, Kang N J, Yu H, Nomura M, Miyamoto K I. et al .Inhibitory effects of caffeine analogues on neoplastic transformation: structure-activity relationship. Carcinogenesis, in press
  • 72 Nkondjock A, Ghadirian P, Kotsopoulos J, Lubinski J, Lynch H, Kim-Sing C. et al . Coffee consumption and breast cancer risk among BRCA1 and BRCA2 mutation carriers.  Int J Cancer. 2006;  118 103-7
  • 73 Kurozawa Y, Ogimoto I, Shibata A, Nose T, Yoshimura T, Suzuki H. et al . Coffee and risk of death from hepatocellular carcinoma in a large cohort study in Japan.  Br J Cancer. 2005;  93 607-10
  • 74 Gelatti U, Covolo L, Franceschini M, Pirali F, Tagger A, Ribero M L. et al . Coffee consumption reduces the risk of hepatocellular carcinoma independently of its aetiology: a case-control study.  J Hepatol. 2005;  42 528-34
  • 75 Baker J A, McCann S E, Reid M E, Nowell S, Beehler G P, Moysich K B. Associations between black tea and coffee consumption and risk of lung cancer among current and former smokers.  Nutr Cancer. 2005;  52 15-21
  • 76 Hakim I A, Harris R B, Weisgerber U M. Tea intake and squamous cell carcinoma of the skin: influence of type of tea beverages.  Cancer Epidemiol Biomarkers Prev. 2000;  9 727-31
  • 77 Rees J R, Stukel T A, Perry A E, Zens M S, Spencer S K, Karagas M R. Tea consumption and basal cell and squamous cell skin cancer: results of a case-control study.  J Am Acad Dermatol. 2007;  56 781-5
  • 78 Abel E L, Hendrix S O, McNeeley S G, Johnson K C, Rosenberg C A, Mossavar-Rahmani Y. et al . Daily coffee consumption and prevalence of nonmelanoma skin cancer in Caucasian women.  Eur J Cancer Prev. 2007;  16 446-52
  • 79 Mitscher L A, Park Y H, Clark D, Clark III G W, Hammesfahr P D, Wu W N. et al . Antimicrobial agents from higher plants. An investigation of Hunnemannia fumariaefolia pseudoalcoholates of sanguinarine and chelerythrine.  Lloydia. 1978;  41 145-50
  • 80 Lenfeld J, Kroutil M, Marsálek E, Slavík J, Preininger V, Simánek V. Antiinflammatory activity of quaternary benzophenanthridine alkaloids from Chelidonium majus.  Planta Med. 1981;  43 161-5
  • 81 Reagan-Shaw S, Breur J, Ahmad N. Enhancement of UVB radiation-mediated apoptosis by sanguinarine in HaCaT human immortalized keratinocytes.  Mol Cancer Ther. 2006;  5 418-29
  • 82 Ahsan H, Reagan-Shaw S, Eggert D M, Tan T C, Afaq F, Mukhtar H. et al . Protective effect of sanguinarine on ultraviolet B-mediated damages in SKH-1 hairless mouse skin: implications for prevention of skin cancer.  Photochem Photobiol. 2007;  83 986-93
  • 83 Ross J A, Kasum C M. Dietary flavonoids: bioavailability, metabolic effects, and safety.  Annu Rev Nutr. 2002;  22 19-34
  • 84 Dinkova-Kostova A T. Protection against cancer by plant phenylpropenoids: induction of mammalian anticarcinogenic enzymes.  Mini Rev Med Chem. 2002;  2 595-610
  • 85 Dinkova-Kostova A T, Talalay P. Direct and indirect antioxidant properties of inducers of cytoprotective proteins. Mol Nutr Food Res, in press
  • 86 Williams R J, Spencer J P, Rice-Evans C. Flavonoids: antioxidants or signalling molecules?.  Free Radic Biol Med. 2004;  36 838-49
  • 87 Richelle M, Sabatier M, Steiling H, Williamson G. Skin bioavailability of dietary vitamin E, carotenoids, polyphenols, vitamin C, zinc and selenium.  Br J Nutr. 2006;  96 227-38
  • 88 Barthelman M, Bair III W B, Stickland K K, Chen W, Timmermann B N, Valcic S. et al . (–)-Epigallocatechin-3-gallate inhibition of ultraviolet B-induced AP-1 activity.  Carcinogenesis. 1998;  19 2201-4
  • 89 Chen W, Dong Z, Valcic S, Timmermann B N, Bowden G T. Inhibition of ultraviolet B--induced c-fos gene expression and p38 mitogen-activated protein kinase activation by (–)-epigallocatechin gallate in a human keratinocyte cell line.  Mol Carcinogen. 1999;  24 79-84
  • 90 Mittal A, Piyathilake C, Hara Y, Katiyar S K. Exceptionally high protection of photocarcinogenesis by topical application of (–)-epigallocatechin-3-gallate in hydrophilic cream in SKH-1 hairless mouse model: relationship to inhibition of UVB-induced global DNA hypomethylation.  Neoplasia. 2003;  5 555-65
  • 91 Mantena S K, Roy A M, Katiyar S K. Epigallocatechin-3-gallate inhibits photocarcinogenesis through inhibition of angiogenic factors and activation of CD8+ T cells in tumors.  Photochem Photobiol. 2005;  81 1174-9
  • 92 Katiyar S K, Challa A, McCormick T S, Cooper K D, Mukhtar H. Prevention of UVB-induced immunosuppression in mice by the green tea polyphenol (–)-epigallocatechin-3-gallate may be associated with alterations in IL-10 and IL-12 production.  Carcinogenesis. 1999;  20 2117-24
  • 93 Katiyar S K, Matsui M S, Elmets C A, Mukhtar H. Polyphenolic antioxidant (–)-epigallocatechin-3-gallate from green tea reduces UVB-induced inflammatory responses and infiltration of leukocytes in human skin.  Photochem Photobiol. 1999;  69 148-53
  • 94 Katiyar S, Elmets C A, Katiyar S K. Green tea and skin cancer: photoimmunology, angiogenesis and DNA repair.  J Nutr Biochem. 2007;  18 287-96
  • 95 Katiyar S K, Mukhtar H. Green tea polyphenol (–)-epigallocatechin-3-gallate treatment to mouse skin prevents UVB-induced infiltration of leukocytes, depletion of antigen-presenting cells, and oxidative stress.  J Leukoc Biol. 2001;  69 719-26
  • 96 Meeran S M, Mantena S K, Katiyar S K. Prevention of ultraviolet radiation-induced immunosuppression by (–)-epigallocatechin-3-gallate in mice is mediated through interleukin 12-dependent DNA repair.  Clin Cancer Res. 2006;  12 2272-80
  • 97 Meeran S M, Mantena S K, Elmets C A, Katiyar S K. (–)-Epigallocatechin-3-gallate prevents photocarcinogenesis in mice through interleukin-12-dependent DNA repair.  Cancer Res. 2006;  66 5512-20
  • 98 Schwarz A, Maeda A, Gan D, Mammone T, Matsui M S, Schwarz T. Green tea phenol extracts reduce UVB-induced DNA damage in human cells via Interleukin-12.  Photochem Photobiol. 2008;  84 350-5
  • 99 Katiyar S K, Afaq F, Perez A, Mukhtar H. Green tea polyphenol (–)-epigallocatechin-3-gallate treatment of human skin inhibits ultraviolet radiation-induced oxidative stress.  Carcinogenesis. 2001;  22 287-94
  • 100 Lee M J, Maliakal P, Chen L, Meng X, Bondoc F Y, Prabhu S. et al . Pharmacokinetics of tea catechins after ingestion of green tea and (–)-epigallocatechin-3-gallate by humans: formation of different metabolites and individual variability.  Cancer Epidemiol Biomarkers Prev. 2002;  11 025-32
  • 101 Chow H H, Cai Y, Hakim I A, Crowell J A, Shahi F, Brooks C A. et al . Pharmacokinetics and safety of green tea polyphenols after multiple-dose administration of epigallocatechin gallate and polyphenon E in healthy individuals.  Clin Cancer Res. 2003;  9 3312-9
  • 102 Heinrich U, Neukam K, Tronnier H, Sies H, Stahl W. Long-term ingestion of high flavanol cocoa provides photoprotection against UV-induced erythema and improves skin condition in women.  J Nutr. 2006;  136 1565-9
  • 103 Wei H, Saladi R, Lu Y, Wang Y, Palep S R, Moore J. et al . Isoflavone genistein: photoprotection and clinical implications in dermatology.  J Nutr. 2003;  133 3811S-9S
  • 104 Isoherranen K, Punnonen K, Jansen C, Uotila P. Ultraviolet irradiation induces cyclooxygenase-2 expression in keratinocytes.  Br J Dermatol. 1999;  140 1017-22
  • 105 Miller C C, Hale P, Pentland A P. Ultraviolet B injury increases prostaglandin synthesis through a tyrosine kinase-dependent pathway. Evidence for UVB-induced epidermal growth factor receptor activation.  J Biol Chem. 1994;  269 3529-33
  • 106 Isoherranen K, Westermarck J, Kähäri V M, Jansén C, Punnonen K. Differential regulation of the AP-1 family members by UV irradiation in vitro and in vivo.  Cell Signal. 1998;  10 191-5
  • 107 Mazière C, Dantin F, Dubois F, Santus R, Mazière J. Biphasic effect of UVA radiation on STAT1 activity and tyrosine phosphorylation in cultured human keratinocytes.  Free Radic Biol Med. 2000;  28 1430-7
  • 108 Widyarini S, Spinks N, Husband A J, Reeve V E. Isoflavonoid compounds from red clover (Trifolium pratense) protect from inflammation and immune suppression induced by UV radiation.  Photochem Photobiol. 2001;  74 465-70
  • 109 Brand R M, Jendrzejewski J L. Topical treatment with (–)-epigallocatechin-3-gallate and genistein after a single UV exposure can reduce skin damage.  J Dermatol Sci. 2008;  50 69-72
  • 110 Moore J O, Wang Y, Stebbins W G, Gao D, Zhou X, Phelps R. et al . Photoprotective effect of isoflavone genistein on ultraviolet B-induced pyrimidine dimer formation and PCNA expression in human reconstituted skin and its implications in dermatology and prevention of cutaneous carcinogenesis.  Carcinogenesis. 2006;  27 1627-35
  • 111 Rohdewald P. A review of the French maritime pine bark extract (Pycnogenol), a herbal medication with a diverse clinical pharmacology.  Int J Clin Pharmacol Ther. 2002;  40 158-68
  • 112 Cho K J, Yun C H, Yoon D Y, Cho Y S, Rimbach G, Packer L. et al . Effect of bioflavonoids extracted from the bark of Pinus maritima on proinflammatory cytokine interleukin-1 production in lipopolysaccharide-stimulated RAW 264.7.  Toxicol Appl Pharmacol. 2000;  168 64-71
  • 113 Cho K J, Yun C H, Packer L, Chung A S. Inhibition mechanisms of bioflavonoids extracted from the bark of Pinus maritima on the expression of proinflammatory cytokines.  Ann N Y Acad Sci. 2001;  928 141-56
  • 114 Packer L, Rimbach G, Virgili F. Antioxidant activity and biologic properties of a procyanidin-rich extract from pine (Pinus maritima) bark, pycnogenol.  Free Radic Biol Med. 1999;  27 704-24
  • 115 Sime S, Reeve V E. Protection from inflammation, immunosuppression and carcinogenesis induced by UV radiation in mice by topical Pycnogenol.  Photochem Photobiol. 2004;  79 193-8
  • 116 Singh R P, Agarwal R. Mechanisms and preclinical efficacy of silibinin in preventing skin cancer.  Eur J Cancer. 2005;  41 1969-79
  • 117 Meeran S M, Katiyar S, Elmets C A, Katiyar S K. Silymarin inhibits UV radiation-induced immunosuppression through augmentation of interleukin-12 in mice.  Mol Cancer Ther. 2006;  5 1660-8
  • 118 Gu M, Singh R P, Dhanalakshmi S, Agarwal C, Agarwal R. Silibinin inhibits inflammatory and angiogenic attributes in photocarcinogenesis in SKH-1 hairless mice.  Cancer Res. 2007;  67 3483-91
  • 119 El-Agamey A, Lowe G M, McGarvey D J, Mortensen A, Phillip D M, Truscott T G. et al . Carotenoid radical chemistry and antioxidant/pro-oxidant properties.  Arch Biochem Biophys. 2004;  430 37-48
  • 120 Demmig-Adams B, Gilmore A M, Adams III W W. Carotenoids 3: in vivo function of carotenoids in higher plants.  FASEB J. 1996;  10 403-12
  • 121 Demmig-Adams B, Adams III W W. Antioxidants in photosynthesis and human nutrition.  Science. 2002;  298 2149-53
  • 122 Stahl W, Sies H. Carotenoids and flavonoids contribute to nutritional protection against skin damage from sunlight.  Mol Biotechnol. 2007;  37 26-30
  • 123 Stahl W, Heinrich U, Aust O, Tronnier H, Sies H. Lycopene-rich products and dietary photoprotection.  Photochem Photobiol Sci. 2006;  5 238-42
  • 124 Stahl W, Heinrich U, Wiseman S, Eichler O, Sies H, Tronnier H. Dietary tomato paste protects against ultraviolet light-induced erythema in humans.  J Nutr. 2001;  131 1449-51
  • 125 Heinrich U, Gärtner C, Wiebusch M, Eichler O, Sies H, Tronnier H. et al . Supplementation with beta-carotene or a similar amount of mixed carotenoids protects humans from UV-induced erythema.  J Nutr. 2003;  133 98-101
  • 126 Fahey J W, Stephenson K K, Dinkova-Kostova A T, Egner P A, Kensler T W, Talalay P. Chlorophyll, chlorophyllin and related tetrapyrroles are significant inducers of mammalian phase 2 cytoprotective genes.  Carcinogenesis. 2005;  26 1247-55
  • 127 Khachik F, Bertram J S, Huang M -T, Fahey J W, Talalay P. Dietary carotenoids and their metabolites as potentially useful chemoprotective agents against cancer. In: Packer L, Hiramatsu M, Yoshikawa T, editors Proceedings of the International Symposium on Antioxidant Food Supplements in Human Health. Oxford; Academic Press 1999: 203-29
  • 128 Fahey J W, Zalcmann A T, Talalay P. The chemical diversity and distribution of glucosinolates and isothiocyanates among plants.  Phytochemistry. 2001;  56 5-51
  • 129 Wittstock U, Halkier B A. Glucosinolate research in the Arabidopsis era.  Trends Plant Sci. 2002;  7 263-70
  • 130 Halkier B A, Gershenzon J. Biology and biochemistry of glucosinolates.  Annu Rev Plant Biol. 2006;  57 303-33
  • 131 Wittstock U, Gershenzon J. Constitutive plant toxins and their role in defense against herbivores and pathogens.  Curr Opin Plant Biol. 2002;  5 300-7
  • 132 Matusheski N V, Juvik J A, Jeffery E H. Heating decreases epithiospecifier protein activity and increases sulforaphane formation in broccoli.  Phytochemistry. 2004;  65 1273-81
  • 133 Shapiro T A, Fahey J W, Wade K L, Stephenson K K, Talalay P. Human metabolism and excretion of cancer chemoprotective glucosinolates and isothiocyanates of cruciferous vegetables.  Cancer Epidemiol Biomarkers Prev. 1998;  7 1091-100
  • 134 Shapiro T A, Fahey J W, Wade K L, Stephenson K K, Talalay P. Chemoprotective glucosinolates and isothiocyanates of broccoli sprouts: metabolism and excretion in humans.  Cancer Epidemiol Biomarkers Prev. 2001;  10 501-8
  • 135 Zhang Y, Cho C G, Posner G H, Talalay P. Spectroscopic quantitation of organic isothiocyanates by cyclocondensation with vicinal dithiols.  Anal Biochem. 1992;  205 100-7
  • 136 Zhang Y, Wade K L, Prestera T, Talalay P. Quantitative determination of isothiocyanates, dithiocarbamates, carbon disulfide, and related thiocarbonyl compounds by cyclocondensation with 1,2-benzenedithiol.  Anal Biochem. 1996;  239 160-7
  • 137 Shapiro T A, Fahey J W, Dinkova-Kostova A T, Holtzclaw W D, Stephenson K K, Wade K L. et al . Safety, tolerance, and metabolism of broccoli sprout glucosinolates and isothiocyanates: a clinical phase I study.  Nutr Cancer. 2006;  55 53-62
  • 138 Zhang Y, Talalay P, Cho C G, Posner G H. A major inducer of anticarcinogenic protective enzymes from broccoli: isolation and elucidation of structure.  Proc Natl Acad Sci USA. 1992;  89 2399-403
  • 139 Zhang Y, Tang L. Discovery and development of sulforaphane as a cancer chemopreventive phytochemical.  Acta Pharmacol Sin. 2007;  28 1343-54
  • 140 Talalay P, Dinkova-Kostova A T, Holtzclaw W D. Importance of phase 2 gene regulation in protection against electrophile and reactive oxygen toxicity and carcinogenesis.  Adv Enzyme Regul. 2003;  43 121-34
  • 141 Nguyen T, Yang C S, Pickett C B. The pathways and molecular mechanisms regulating Nrf2 activation in response to chemical stress.  Free Radic Biol Med. 2004;  37 433-41
  • 142 Motohashi H, Yamamoto M. Nrf2-Keap1 defines a physiologically important stress response mechanism.  Trends Mol Med. 2004;  10 549-57
  • 143 Dinkova-Kostova A T, Holtzclaw W D, Kensler T W. The role of Keap1 in cellular protective responses.  Chem Res Toxicol. 2005;  18 1779-91
  • 144 Kensler T W, Wakabayashi N, Biswal S. Cell survival responses to environmental stresses via the Keap1-Nrf2-ARE pathway.  Annu Rev Pharmacol Toxicol. 2007;  47 89-116
  • 145 Fahey J W, Talalay P. Antioxidant functions of sulforaphane: a potent inducer of Phase II detoxication enzymes.  Food Chem Toxicol. 1999;  37 973-9
  • 146 Dinkova-Kostova A T, Jenkins S N, Fahey J W, Ye L, Wehage S L, Stephenson K K. et al . Protection against UV-light-induced skin carcinogenesis in SKH-1 high-risk mice by sulforaphane-containing broccoli sprout extracts.  Cancer Lett. 2006;  240 243-52
  • 147 Thejass P, Kuttan G. Immunomodulatory activity of sulforaphane, a naturally occurring isothiocyanate from broccoli (Brassica oleracea).  Phytomedicine. 2007;  14 538-45
  • 148 Kim H J, Barajas B, Wang M, Nel A E. Nrf2 activation by sulforaphane restores the age-related decrease of T(H)1 immunity: Role of dendritic cells. J Allergy Clin Immunol, in press
  • 149 Talalay P, Fahey J W, Healy Z R, Wehage S L, Benedict A L, Min C. et al . Sulforaphane mobilizes cellular defenses that protect skin against damage by UV radiation.  Proc Natl Acad Sci USA. 2007;  104 17 500-5
  • 150 Dinkova-Kostova A T, Fahey J W, Wade K L, Jenkins S N, Shapiro T A, Fuchs E J. et al . Induction of the phase 2 response in mouse and human skin by sulforaphane-containing broccoli sprout extracts.  Cancer Epidemiol Biomarkers Prev. 2007;  16 847-51
  • 151 Reichrath J. Vitamin D and the skin: an ancient friend, revisited.  Exp Dermatol. 2007;  16 618-25
  • 152 Han S S, Keum Y S, Seo H J, Chun K S, Lee S S, Surh Y J. Capsaicin suppresses phorbol ester-induced activation of NF-kappaB/Rel and AP-1 transcription factors in mouse epidermis.  Cancer Lett. 2001;  164 119-26
  • 153 Surh Y J. Cancer chemoprevention with dietary phytochemicals.  Nat Rev Cancer. 2003;  3 768-80
  • 154 Garssen J, Buckley T L, Van Loveren H. A role for neuropeptides in UVB-induced systemic immunosuppression.  Photochem Photobiol. 1998;  68 205-10
  • 155 Hart P H, Townley S L, Grimbaldeston M A, Khalil Z, Finlay-Jones J J. Mast cells, neuropeptides, histamine, and prostaglandins in UV-induced systemic immunosuppression.  Methods. 2002;  28 79-89
  • 156 Townley S L, Grimbaldeston M A, Ferguson I, Rush R A, Zhang S H, Zhou X F. et al . Nerve growth factor, neuropeptides, and mast cells in ultraviolet-B-induced systemic suppression of contact hypersensitivity responses in mice.  J Invest Dermatol. 2002;  118 396-401
  • 157 Howes R A, Halliday G M, Barnetson R S, Friedmann A C, Damian D L. Topical capsaicin reduces ultraviolet radiation-induced suppression of Mantoux reactions in humans.  J Dermatol Sci. 2006;  44 113-5
  • 158 Baur J A, Sinclair D A. Therapeutic potential of resveratrol: the in vivo evidence.  Nat Rev Drug Discov. 2006;  5 493-506
  • 159 Cantos E, Espín J C, Tomás-Barberán F A. Postharvest induction modeling method using UV irradiation pulses for obtaining resveratrol-enriched table grapes: a new ”functional” fruit?.  J Agric Food Chem. 2001;  49 5052-8
  • 160 Versari A, Parpinello G P, Tornielli G B, Ferrarini R, Giulivo C. Stilbene compounds and stilbene synthase expression during ripening, wilting, and UV treatment in grape cv. Corvina.  J Agric Food Chem. 2001;  49 5531-6
  • 161 Adhami V M, Afaq F, Ahmad N. Suppression of ultraviolet B exposure-mediated activation of NF-kB in normal human keratinocytes by resveratrol.  Neoplasia. 2003;  5 74-82
  • 162 Park K, Lee J H. Protective effects of resveratrol on UVB-irradiated HaCaT cells through attenuation of the caspase pathway.  Oncol Rep. 2008;  19 413-7
  • 163 Afaq F, Adhami V M, Ahmad N. Prevention of short-term ultraviolet B radiation-mediated damages by resveratrol in SKH-1 hairless mice.  Toxicol Appl Pharmacol. 2003;  186 28-37
  • 164 Reagan-Shaw S, Afaq F, Aziz M H, Ahmad N. Modulations of critical cell cycle regulatory events during chemoprevention of ultraviolet B-mediated responses by resveratrol in SKH-1 hairless mouse skin.  Oncogene. 2004;  23 5151-60
  • 165 Aziz M H, Reagan-Shaw S, Wu J, Longley B J, Ahmad N. Chemoprevention of skin cancer by grape constituent resveratrol: relevance to human disease?.  FASEB J. 2005;  19 1193-5
  • 166 Barthelman M, Chen W, Gensler H L, Huang C, Dong Z, Bowden G T. Inhibitory effects of perillyl alcohol on UVB-induced murine skin cancer and AP-1 transactivation.  Cancer Res. 1998;  58 711-6
  • 167 Haridas V, Hanausek M, Nishimura G, Soehnge H. et al . Triterpenoid electrophiles (avicins) activate the innate stress response by redox regulation of a gene battery.  J Clin Invest. 2004;  113 65-73
  • 168 Creelman R A, Mullet J E. Oligosaccharins, brassinolides, and jasmonates: nontraditional regulators of plant growth, development, and gene expression.  Plant Cell. 1997;  9 1211-23
  • 169 Strickland F M, Darvill A, Albersheim P, Eberhard S, Pauly M, Pelley R P. Inhibition of UV-induced immune suppression and interleukin-10 production by plant oligosaccharides and polysaccharides.  Photochem Photobiol. 1999;  69 141-7
  • 170 Strickland F M. Immune regulation by polysaccharides: implications for skin cancer.  J Photochem Photobiol B. 2001;  63 132-40

Albena T. Dinkova-Kostova

University of Dundee

Biomedical Research Centre

Ninewells Hospital and Medical School, Level 5

Dundee DD1 9SY

Scotland

United Kingdom

Phone: +44-1382-740-045

Fax: +44-1382-669-993

Email: a.dinkovakostova@dundee.ac.uk