Anästhesiol Intensivmed Notfallmed Schmerzther 2008; 43(6): 456-463
DOI: 10.1055/s-2008-1081393
Fachwissen
Topthema: Lungenprotektive Beatmung
© Georg Thieme Verlag Stuttgart · New York

Assistierte Spontanatmung: physiologische Grundlagen und protektive Effekte

Lung Protective Ventilation – Protective Effect of Adequate Supported Spontaneous BreathingChristian Putensen, Thomas Muders, Stefan Kreyer, Hermann Wrigge
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
18. Juni 2008 (online)

Zusammenfassung

Aufgrund vorliegender Daten kann empfohlen werden, die maschinell unterstützte Spontanatmung bei Patienten auch in der akuten Phase der respiratorischen Insuffizienz anzuwenden, sofern keine Kontraindikationen bestehen. Experimentelle Daten zeigen, dass eine adäquat maschinell unterstützte Spontanatmung zu keiner beatmungsassoziierten Lungenschädigung beiträgt. Eine Erhöhung des transpulmonalen Drucks (PTP) infolge Spontanatmung ist in den abhängigen zwerchfellnahen Lungenregionen zu erwarten und trägt zur Rekrutierung initial nicht belüfteter Lungenregionen und dadurch zur Vermeidung des zyklischen Kollabierens und Wiedereröffnens von Alveolen bei. Insgesamt sollte daher ein lungenprotektiver Effekt durch Spontanatmung erwartet werden. Klinische Daten, die mit erhaltener Spontanatmung eine Verbesserung des Gasaustausches, des systemischen Blutflusses und der Organperfusion bei einer Reduktion der Beatmungstage und Intensivaufenthaltsdauer beobachteten, stützen dieses Konzept.

Summary

Based on available data, it can be suggested that spontaneous breathing during ventilator support has not to be suppressed even in patients with severe pulmonary dysfunction if no contraindications are present. Experimental data do not support the contention that spontaneous breathing aggravates ventilator–induced lung injury. During spontaneous breathing increase in PTP is maximal in the depended lung areas in adjunct to the diaphragm and causes recruitment of initially atelectatic lung areas thereby avoiding cyclic alveolar collapse and reopening. This should result in a lung protective effect of adequate supported spontaneous breathing. Clinical data supported this belief demonstrating improvement in pulmonary gas exchange, systemic blood flow, and oxygen supply to the tissue and a decrease in days on ventilator support and duration of stay in the intensive care unit.

Kernaussagen

  • Bei der assistierten maschinellen Beatmung (ACV) und der druckunterstützten Beatmung (PSV) wird jede spontane Inspirationsbemühung maschinell unterstützt.

  • Die Airway Pressure Release Ventilation (APRV) erlaubt eine ungehinderte Spontanatmung in jeder Phase des maschinellen Beatmungszykluses [7].

  • Während der Spontanatmung wird die Ventilation bevorzugt in die abhängigen Lungenregionen verteilt, die gleichzeitig auch mehr perfundiert sind. Bei der maschinellen Beatmung erfolgt die Distribution des Tidalvolumens (VT) überwiegend in die anterioren Lungenregionen, die geringer perfundiert sind [9]. Dies führt zu minder belüfteten bzw. atelektatischen Lungenarealen in den dorsalen zwerchfellnahen Lungenregionen.

  • APRV mit Spontanatmung war bei experimentell induziertem Lungenschaden mit einer geringeren Atelektasenbildung assoziiert als APRV ohne Spontanatmung.

  • Zwerchfellkontraktion bei Spontanatmung verbessert die Belüftung abhängiger und gut perfundierter Lungenareale und wirkt einer Atelektasenbildung entgegen.

  • Eine ungehinderte Spontanatmung unter APRV bei Patienten mit schwerem ARDS verbessert den den intrapulmonalen Shunt, das VA/Q–Verhältnis und die arterielle Oxygenierung [21]. Bei der druckunterstützten Beatmung (PSV) konnte dieser Effekt nicht nachgewiesen werden.

  • Die erhaltene Spontanatmung während maschineller Atemhilfe reduziert den intrathorakalen Druck. Dadurch wird der venöse Rückstrom zum Herzen sowie die rechts– und die linksventrikuläre Füllung gefördert; das Herzzeitvolumen und die O2–Transportkapazität steigen [27]. Dies führt zu einer verbesserten Durchblutung der extrathorakalen Organe [29] [30] [31].

  • Die tidale Rekrutierung ist das Wiedereröffnen von Lungenarealen mit der nächsten Inspiration, also das zyklische Kollabieren und Wiedereröffnen von Alveolen.

  • Eine erhaltene Spontanatmung ist in der Lage, intitial kollabierte Lungenareale zu rekrutieren und kontinuierlich zu belüften.

  • Ein erhöhter transpulmonaler Druck und/oder Scherkräfte aufgrund von zyklischem Kollabieren und Wiedereröffnen von Alveolen belasten das Gewebe mechanisch und tragen zur beatmungsassoziierten Lungenschädigung mit Agravierung der pulmonalen und systemischen inflammatorischen Reaktion bei [42] [43].

  • Eine inadäquat starke inspiratorische Atemanstrengung bei einer nicht oder nicht ausreichend assistierten Spontanatmung könnte zu einer ausgeprägten Negativierung des PPL und zu einem Anstieg des PTP führen. Ein solchermaßen stark erhöhter PTP in Verbindung mit einer hohen Atemfrequenz könnte zu einer beatmungsassoziierten Lungenschädigung beitragen [44].

Literatur

  • 1 Esteban A, Ferguson ND, Meade MO. et al. . Evolution of mechanical ventilation in response to clinical research.  Am J Respir Crit Care Med. 2008;  177 170-7
  • 2 MacIntyre NR.. Evidence–based ventilator weaning and discontinuation.  Respir Care. 2004;  49 830-6
  • 3 Ely EW, Baker AM, Dunagan al. DP et. Effect on the duration of mechanical ventilation of identifying patients capable of breathing spontaneously.  N Engl J Med. 1996;  335 1864-9
  • 4 Kollef MH, Shapiro SD, Silver P. et al. . A randomized, controlled trial of protocol–directed versus physician–directed weaning from mechanical ventilation.  Crit Care Med. 1997;  25 567-74
  • 5 Brochard L, Rauss A, Benito S. et al. . Comparison of three methods of gradual withdrawal from ventilatory support during weaning from mechanical ventilation.  Am J Respir Crit Care Med. 1994;  150 896-903
  • 6 Esteban A, Alia I, Gordo F. et al. . Extubation outcome after spontaneous breathing trials with T–tube or pressure support ventilation. The Spanish Lung Failure Collaborative Group.  Am J Respir Crit Care Med. 1997;  156 459-65
  • 7 Baum M, Benzer H, Putensen C, Koller W.. Biphasic positive airway pressure (BIPAP)––a new.form of augmented ventilation.  Anaesthesist. 1989;  38 452-8
  • 8 Froese AB, Bryan AC.. Effects of anesthesia and paralysis on diaphragmatic mechanics in man.  Anesthesiology. 1974;  41 242-55
  • 9 Reber A, Nylund U, Hedenstierna G.. Position and shape of the diaphragm: implications for atelectasis formation.  Anaesthesia. 1998;  53 1054-61
  • 10 Kleinman BS, Frey K, VanDrunen M. et al. . Motion of the Diaphragm in Patients with Chronic Obstructive Pulmonary Disease while Spontaneously Breathing versus during Positive Pressure Breathing after Anesthesia and Neuromuscular Blockade.  Anesthesiology. 2002;  97 298-305
  • 11 Gattinoni L, Presenti A, Torresin A. et al. . Adult respiratory distress syndrome profiles by.computed tomography.  J Thorac Imaging. 1986;  1 25-30
  • 12 Putensen C, Hering R, Wrigge H.. Controlled versus assisted mechanical ventilation.  Curr Opin Crit Care. 2002;  8 51-7
  • 13 Putensen C, Zech S, Wrigge H. et al. . Long–term effects of spontaneous breathing during ventilatory support in patients with acute lung injury.  Am J Respir Crit Care Med. 2001;  164 43-9
  • 14 Wagner PD, Dantzker DR, Dueck R. et al. . Distribution of ventilation–perfusion ratios in.patients with interstitial lung disease.  Chest. 1976;  69 256-7
  • 15 Pelosi P, D'Andrea L, Vitale G. et al. . Vertical gradient of regional lung inflation in adult respiratory distress syndrome.  Am J Respir Crit Care Med. 1994;  149 8-13
  • 16 Gattinoni L, Pelosi P, Suter PM. et al. . Acute respiratory distress syndrome caused by pulmonary and extrapulmonary disease. Different syndromes? (see comments).  Am J Respir Crit Care Med. 1998;  158 3-11
  • 17 Hedenstierna G, Tokics L, Lundquist H. et al. . Phrenic nerve stimulation during halothane anesthesia. Effects of atelectasis.  Anesthesiology. 1994;  80 751-60
  • 18 Wrigge H, Zinserling J, Neumann P. et al. . Spontaneous Breathing Improves Lung Aeration in Oleic Acid–induced Lung Injury.  Anesthesiology. 2003;  99 376-84
  • 19 Henzler D, Dembinski R, Bensberg R. et al. . Ventilation with biphasic positive airway pressure in experimental lung injuryInfluence of transpulmonary pressure on gas exchange and haemodynamics.  Intensive Care Med. 2004;  24
  • 20 Wrigge H, Zinserling J, Neumann P. et al. . Spontaneous breathing with airway pressure release ventilation favors ventilation in dependent lung regions and counters cyclic alveolar collapse in oleic–acid–induced lung injury: a randomized controlled computed tomography trial.  Crit Care. 2005;  9
  • 21 Putensen C, Mutz NJ, Putensen–Himmer G, Zinserling J.. Spontaneous breathing during ventilatory support improves ventilation– perfusion distributions in patients with acute respiratory distress syndrome.  Am J Respir Crit Care Med. 1999;  159 1241-8
  • 22 Putensen C, Rasanen J, Lopez FA.. Effect of interfacing between spontaneous breathing and mechanical cycles on the ventilation–perfusion distribution in canine lung injury.  Anesthesiology. 1994;  81 921-30
  • 23 Putensen C, Rasanen J, Lopez FA.. Ventilation–perfusion distributions during mechanical ventilation with superimposed spontaneous breathing in canine lung injury.  Am J Respir Crit Care Med. 1994;  150 101-8
  • 24 Sydow M, Burchardi H, Ephraim E, Zielmann S.. Long–term effects of two different ventilatory modes on oxygenation in acute lung injury. Comparison of airway pressure release ventilation and volume–controlled inverse ratio ventilation.  Am J Respir Crit Care Med. 1994;  149 1550-6
  • 25 Cereda M, Foti G, Musch G, Sparacino ME.. Positive end–expiratory pressure prevents the loss.of respiratory compliance during low tidal volume.ventilation in acute lung injury patients.  Chest. 1996;  109 480-5
  • 26 Pinsky MR.. The effects of mechanical ventilation on the.cardiovascular system.  Crit Care Clin. 1990;  6 663-78
  • 27 Downs JB, Douglas ME, Sanfelippo PM, Stanford W.. Ventilatory pattern, intrapleural pressure, and.cardiac output.  Anesth Analg. 1977;  56 88-96
  • 28 Kaplan LJ, Bailey H, Formosa V.. Airway pressure release ventilation increases cardiac performance in patients with acute lung injury/adult respiratory distress syndrome.  Crit Care. 2001;  5 221-6
  • 29 Hering R, Bolten JC, Kreyer S. et al. . Spontaneous breathing during airway pressure release ventilation in experimental lung injury: effects on hepatic blood flow.  Intensive Care Med. 2008;  34 523-7
  • 30 Hering R, Viehofer A, Zinserling J. et al. . Effects of spontaneous breathing during airway pressure release ventilation on intestinal blood flow in experimental lung injury.  Anesthesiology. 2003;  99 1137-44
  • 31 Hering R, Peters D, Zinserling J. et al. . Effects of spontaneous breathing during airway pressure release ventilation on renal perfusion and function in patients with acute lung injury.  Intensive Care Med. 2002;  28 1426-33
  • 32 Marini JJ, Gattinoni L.. Ventilatory management of acute respiratory distress syndrome: a consensus of two.  Crit Care Med. 2004;  32 250-5
  • 33 Gattinoni L, Caironi P, Carlesso E.. How to ventilate patients with acute lung injury and acute respiratory distress syndrome.  Curr Opin Crit Care. 2005;  11 69-76
  • 34 Neumann P, Wrigge H, Zinserling J. et al. . Spontaneous breathing affects the spatial ventilation and perfusion distribution during mechanical ventilatory support.  Crit Care Med. 2005;  33 1090-5
  • 35 Gattinoni L, D'Andrea L, Pelosi P. et al. . Regional effects and mechanism of positive end–expiratory pressure in early adult respiratory distress syndrome.  JAMA. 1993;  269 2122-7
  • 36 Gattinoni L, Pelosi P, Vitale G. et al. . Body position changes redistribute lung.computed–tomographic density in patients with acute.respiratory failure.  Anesthesiology. 1991;  74 15-23
  • 37 Puybasset L, Gusman P, Muller JC. et al. . Regional distribution of gas and tissue in acute respiratory distress syndrome. III. Consequences for the effects of positive end–expiratory pressure. CT Scan ARDS Study Group. Adult Respiratory Distress Syndrome.  Intensive Care Med. 2000;  26 1215-27
  • 38 Puybasset L, Cluzel P, Gusman P. et al. . Regional distribution of gas and tissue in acute respiratory distress syndrome. I. Consequences for lung morphology. CT Scan ARDS Study Group.  Intensive Care Med. 2000;  26 857-69
  • 39 Puybasset L, Cluzel P, Chao N. et al. . A computed tomography scan assessment of regional lung volume in acute lung injury. The CT Scan ARDS Study Group.  Am J Respir Crit Care Med. 1998;  158 1644-55
  • 40 Malbouisson LM, Busch CJ, Puybasset L. et al. . Role of the heart in the loss of aeration characterizing lower lobes in acute respiratory distress syndrome. CT Scan ARDS Study Group.  Am J Respir Crit Care Med. 2000;  161 2005-12
  • 41 Mead J, Takishima T.. Stress distribution in lungs: a model of pulmonary elasticity.  J Appl Physiol. 1970;  28 596-608
  • 42 Ranieri VM, Suter PM, Tortorella C. et al. . Effect of mechanical ventilation on inflammatory mediators in patients with acute respiratory distress syndrome: a randomized controlled trial.  JAMA. 1999;  282 54-61
  • 43 Stüber F, Wrigge H, Schroeder S. et al. . Kinetic and reversibility of mechanical ventilation–associated pulmonary and systemic inflammatory response in patients with acute lung injury.  Intensive Care Med. 2002;  28 834-41
  • 44 Mascheroni D, Kolobow T, Fumagalli R. et al. . Acute respiratory failure following pharmacologically induced hyperventilation: an experimental animal study.  Intensive Care Med. 1988;  15 8-14
  • 45 Varelmann D, Wrigge H, Zinserling J. et al. . Inflammatory response to spontaneous breathing in two different models of acute lung injury.  Intensive Care Med. 2005;  31
  • 46 Amato MB, Barbas CS, Medeiros DM. et al. . Effect of a protective–ventilation strategy on mortality in the acute respiratory distress syndrome.  N Engl J Med. 1998;  338 347-54
  • 47 The Acute Respiratory Distress Syndrome Network. . Ventilation with lower tidal volumes as compared with traditional tidal volumes for acute lung injury and the acute respiratory distress syndrome.  N Engl J Med. 2000;  342 1301-8
  • 48 Mercat A, Richard JC, Vielle B. et al. . Positive end–expiratory pressure setting in adults with acute lung injury and acute respiratory distress syndrome: a randomized controlled trial.  JAMA. 2008;  299 646-55
  • 49 Meade MO, Cook DJ, Guyatt GH. et al. . Ventilation strategy using low tidal volumes, recruitment maneuvers, and high positive end–expiratory pressure for acute lung injury and acute respiratory distress syndrome: a randomized controlled trial.  JAMA. 2008;  299 637-45

Prof. Dr. med. Christian Putensen
Thomas Muders
Stefan Kreyer
PD Dr. med. Hermann Wrigge

eMail: putensen@uni-bonn.de

>