Pharmacopsychiatry 2008; 41: S2-S18
DOI: 10.1055/s-2008-1081461
Original Paper

© Georg Thieme Verlag KG Stuttgart · New York

Systems Biology and Psychiatry – Modeling Molecular and Cellular Networks of Mental Disorders

F. Tretter 1 , M. Albus 2
  • 1Department of Addictions Isar Amper Clincis, Clinic Munich East, Haar/Munich, Germany
  • 2Dîrector, Isar Amper Clincis, Clinic Munich East, Haar/Munich, Germany
Weitere Informationen

Publikationsverlauf

Publikationsdatum:
28. August 2008 (online)

Abstract

Biological psychiatry has more and more directed it's focus on the involvement of genes and molecules in mental health and disease. On these levels, new approaches in other medical fields are noticed that are collectively dubbed “Systems Biology”. Conceptually, this new paradigm tries to view molecular interactions in cellular networks as dynamic, self-organizing events that eventually result in an ordered maintenance of the whole system. A great deal of applied mathematics is required in systems biology to set up and carry out computer modeling and simulation. In terms of psychiatric research, developing “systems biology of the neuron” could become a pivotal achievement for a better understanding of mental illness on the molecular level. A brief outline of imminent tasks and links between systems biology and biological psychiatry is presented.

References

  • 1 Abbott L, Regehr WG. Synaptic computation.  Nature. 2004;  431 ((7010)) 796-803
  • 2 Abbott L, Varela J, Sen K, Nelson SB. Synaptic depression and cortical gain control.  Science. 1997;  275 220-224
  • 3 Ahn AC, Tewari M, Poon CS, Phillips RS. The limits of reductionism in medicine: could systems biology offer an alternative?.  PLoS Med. 2006;  3 ((6)) e208
  • 4 Ahn AC, Tewari M, Poon CS, Phillips RS. The clinical applications of a systems approach.  PLoS Med. 2006;  3 ((7)) e209
  • 5 Alon U. Systems Biology – Design principles of biological circuits. New York: Chapman & Hall 2007
  • 6 Andreasen N. Brave new brain – Conquering Mental Illness in the Era of The Genome. New York: Oxford University Press 2004
  • 7 Arbib MA, Grethe JS. Computing the brain: A guide to neuroinformatics. San Diego: Academic Press 2001
  • 8 Arbib MA. (Ed). The Handbook of Brain Theory and Neural Networks, 2nd ed. Cambridge, MA: MIT Press 2002
  • 9 Ashby WR. Introduction to Cybernetics. New York : Chapman & Hall 1956
  • 10 Baldi P, Brunak S. Bioinformatics. A practical guide to the analysis of genes and proteins. New York: Wiley 1999
  • 11 Bender W, Albus M, Möller HJ, Tretter F. Towards systemic theories in biological psychiatry.  Pharmacopsychiatry. 2006;  39 ((Suppl.1)) 4-9
  • 12 Benoit-Marand M, Borrelli E, Gonomn F. Inhibition of dopamine release via presynaptic D2 receptors: time course and functional characteristics in vivo.  J Neuroscience. 2001;  21 9134-9141
  • 13 Bertalanffy LV. Modern Theories of Development: An Introduction to Theoretical Biology. New York: Oxford University Press 1933
  • 14 Bertalanffy LV. General system theory. New York: Braziller 1968
  • 15 Bhave SV, Hornbaker C, Phang TL, Saba L, Lapadat R, Kechris K, Gaydos J, MacGoldrick D, Dolbey A, Leach S, Soriano B, Ellington A, Ellington E, Jones K, Mangion J, Belknap JK, Williams RW, Hunter LE, Hoffman PL, Tabakoff B. The PhenoGen informatics website: tools for analyses of complex traits.  BMC Genet. 2007;  8 59
  • 16 Boccara N. Modeling complex systems. Berlin: Springer 2004
  • 17 Bunge M. Philosophy of Science. 2 Vol. London: Transaction Publishers 1998
  • 18 Cardelli L. Abstract machines of systems biology. Transactions on Computational Systems Biology. III, LNBI 3737. Berlin: Springer 2005: 145-168
  • 19 Cohen JD, Servan-Schreiber D. A theory of dopamine function and its role in cognitive deficits in schizophrenia.  Schizophrenia Bulletin. 1993;  19 85-104
  • 20 Conrad ED, Tyson JJ. Modeling molecular interaction networks with nonlinear ordinary differential equations. In: Szallasi Z, Stelling J, Periwal V (Eds). System modeling in cellular biology. Cambridge, MA: MIT Press 2006: 97-124
  • 21 Cragg SJ, Rice ME. DAncing past the DAT at a DA synapse.  TRENDS in Neurosciences. 2004;  27
  • 22 Davis KM, Wu JY. Role of glutamatergic and GABAergic systems in alcoholism.  J Biomed Sci. 2001;  8 ((1)) 7-19
  • 23 Dayan P, Abbott L. Theoretical Neuroscience. Computational and mathematical modeling of neural systems. Cambridge, MA: MIT Press 2005
  • 24 Dayan P, Williams J. Putting computation back into computational modeling.  Pharmacopsychiatry. 2006;  39 ((Suppl.1)) S50-S51
  • 25 Dennett DC. Sweet dreams. Philosophical obstacles to a science of consciousness. Cambridge, MA: MIT Press 2006
  • 26 Durstewitz D. A few important points about dopamine's role in neural network dynamics.  Pharmacopsychiatry. 2006;  39 ((Suppl.1)) S1-S88
  • 27 Edelman GM, Tononi G. A universe of consciousness. How matter becomes imagination. New York: Basic books 2000
  • 28 Eigen M. Molekulare Selbstorganisation und Evolution (Self organization of matter and the evolution of biological macro molecules.).  Naturwissenschaften Bd. 1971;  58 ((10)) 465-523
  • 29 Eigen M, Schuster P. The Hypercycle – A Principle of Natural Self-Organization. Berlin: Springer 1979
  • 30 Fernandez E, Schlappe R, Girault J-A, Le Novere N. DARPP-32 is a robust integrator of dopamine and glutamate signals.  PLoS Computational Biology. 2006;  2 ((12)) e176
  • 31 Feynman R. The Character of Physical Law (Messenger Lectures, 1964). Cambridge, MA: MIT Press 2001
  • 32 Finney A, Hucka M, Borstewin J, Keating SM, Shapiro BE, Matthews J, Kovitz BL, Schilstra MJ, Funahashi A, Doyle J, Kitano H. Software Infrastructure for effective communication and reuse of computational models. In: Szallasi Z, Periwal V, Stelling J (Eds). System, modelling in Cellular Biology. Cambridge, MA: MIT Press 2006: 355-378
  • 33 Fishwick . (Ed) Handbook of dynamic system modeling. New York: Chapman & Hall 2007
  • 34 FMRE, Federal Ministery of Research and Education . , 2006. Systems Biology. www.bmbf.e/pub/systembiologie.pdf,http://www.forschung.bmbf.de/press/785.php
  • 35 Forrester J. Urban dynamics. Cambridge, MA: MIT Press 1961
  • 36 Gallinat J, Obermayer K, Heinz A. Systems Neurobiology of the dysfunctional brain.  Pharmacopsychiatry. 2007;  40 ((Suppl.1)) S40-S44
  • 37 Gebicke-Haerter P. Expression profiling methods used in drug abuse research.  Addict Biol. 2005;  10 ((1)) 37-46
  • 38 Gebicke-Haerter PJ. Expression profiling in brain disorders and beyond.  Nihon Shinkei Seishin Yakurigaku Zasshi.. 2006;  26 ((1)) 1-10
  • 39 Gross R, Löffler M. Prinzipien der Medizin. Heidelberg: Springer 1997
  • 40 Haken H. Synergetics. An introduction. Berlin: Springer 1983
  • 41 Haubold B, Wiehe T. Introduction to computational biology. Basel: Birkhäuser 2006
  • 42 Hodgkin AL, Huxley AF. Currents carried by sodium and potassium ions through the membrane of the giant axon of Loligo.  J Physol Lond. 1952;  117 500-544
  • 43 Hofmann RE, MacGlashan TH. Using a speech perception neural network computer simulation to contrast neuroanatomic versus neuromodulatory models of auditory hallucinations.  Pharmacopsychiatry. 2006;  39 ((Suppl.1)) S54-S64
  • 44 Holst EV, Mittelstaedt H. Das Reafferenzprinzip.  Naturwissenschaften. 1950;  37 464-476
  • 45 Huang S, Wikswo J. Dimensions of systems biology.  Rev Physiol Biochem Pharmacol. 2006;  81-104
  • 46 Jacob F, Monod J. Genetic regulatory mechanisms in the synthesis of proteins.  J Mol Biol. 1961;  3 318-356
  • 47 Kell DB, Knowles JD. The role of modeling in systems biology. In: Szallasi Z, Stelling J, Periwal V (Eds). System modeling in cellular biology. Cambridge, MA: MIT Press 2006: 3-18
  • 48 Kitano H. Perspective on Systems Biology.  New generation Computing. 2000;  18 199-216
  • 49 Kitano H. Systems Biology: a brief overview.  Science. 2002a;  295 1662-1664
  • 50 Kitano H. Computational Systems Biology.  Nature. 2002b;  420 206-210
  • 51 Kitano H. (Ed) Foundations of Systems Biology. Cambridge, MA: MIT Press 2001
  • 52 Klipp E, Herwig R, Kowald A, Wielring C, Lehrach H. Systems Biology in Practice. Weinheim: Wiley-VCH 2005
  • 53 Koch M. Animal Models of Neuropsychiatric Diseases. London: Imperial College Press 2006
  • 54 Koob G, Le Moal M. Drug addiction, dysregulation of reward and allostasis.  Neuropsychopharmacology. 2001;  24 97-129
  • 55 Koob G, Le Moal M. Neurobiology of addiction. New York: Academic Press 2006
  • 56 Koshkina E. Extracellular Dopamine Concentration Control: Computational Model of Feedback Control.  Diss Drexel Univ. 2006; 
  • 57 Koza JR. Genetic programming: On the programming of computers by means of natural selection. Cambridge, MA: MIT Press 1992
  • 58 Le Novere N. The long journey to a Systems Biology of neuronal function.  BMC Systems Biology. 2007;  1 28
  • 59 Lindskog M, Kim MS, Wikstrom MA, Blackwell KT, Kotaleski JH. Transient Calcium and Dopamine Increase PKA Activity and DARPP-32 Phosphorylation.  PloS Comput Biol. 2006;  2 ((9)) e119
  • 60 Lorenz EN. Deterministic Nonperiodic Flow.  Journal of the Atmospheric Sciences. 1963;  20 ((2)) 130-141
  • 61 Lotka A. J Elements of Physical Biology. Baltimore: Williams and Wilkins 1925
  • 62 Mackey MC, Heiden U Van der. The dynamics of recurrent inhibition.  J Math Biol. 1984;  19 ((2)) 211-225
  • 63 Mandelbrot BB. Fractals and Chaos. Berlin: Springer 2004
  • 64 MacGuffin P, Owen MJ, Gottesman II. (Ed). Psychiatric Genetics and Genomics. New York: Oxford University Press 2004
  • 65 Meadows DH, Meadows DL, Randers J, Behrens III WW. The Limits to Growth. New York: Universe Books 1972
  • 66 Meinhardt H. Models of Biological Pattern Formation. London: Academic Press 1982
  • 67 Meyer-Lindenberg A, Weinberger DR. Intermediate phenotypes. and genetic mechanisms of psychiatric disorders.  Nat Rev Neurosci. 2006;  10 818-827
  • 68 Miyano S, Matsuno H. , How to model and simulate biological pathways with Petri nets – a new challenge for systems biology – 25th Int. Conf. Appl. Theory Petri Nets, Bologna, Italy, 22 June 2004
  • 69 Murray JD. An introduction to Mathematical Biology. An Introductory Course. New York: Springer 2004
  • 70 Murray JD. Mathematical Biology. Spatial models and biomedical applications. New York: Springer 2003
  • 71 Nestler E. Historical review: molecular and cellular mechanisms of opiate and cocaine addiction.  Trends in Pharmacological Science. 2004;  25 ((4)) 210-219
  • 72 Nestler EJ. Is there a common molecular pathway for addiction?.  Nat Neurosci. 2005;  8 ((11)) 1445-1449
  • 73 Neve KA, Semans JK, Trantham-Davidson H. Dopamine receptor signalling.  J Recept Signal Transduct Res. 2004;  24 ((3)) 165-205
  • 74 Newton RG. From clockwork to crapshoot: a history of physics. Cambridge, MA: Pelknap Press of Harvard University Press 2007
  • 75 NIH . Systems Biology. http://www.nigms.nih.gov/Initiatives/SysBio/ 2007; 
  • 76 Noble D. Multilevel modelling in Systems Biology: From Cells to Whole Organs. In: Szallasi Z, Periwal V, Stelling J (Ed). System, modelling in Cellular Biology. Cambridge, MA: MIT Press 2006: 297-312
  • 77 Noble D. The Music of Life: Biology Beyond the Genome. New York: Oxford Univ Press 2006
  • 78 Odum HT. Environment, power and society. New York: Wiley 1971
  • 79 Palsson BO. Systems Biology. Cambridge: Cambridge Univ Press 2006
  • 80 Paulsson J, Elf J. Modeling molecular of intracellular kinetics. In: Szallasi Z, Periwal V, Stelling J (Ed). System, modelling in Cellular Biology. Cambridge, MA: MIT Press 2006: 149-176
  • 81 Peper A. A theory of drug tolerance and dependence I: a conceptual analysis.  J Theor Biol. 2004;  229 477-490
  • 82 Peper A. A theory of drug tolerance and dependence II: the mathematical model.  J Theor Biol. 2004;  229 491-500
  • 83 Periwal V, Szallasi Z, Stelling J. System modeling – why and how?. In: Szallasi Z, Periwal V, Stelling J (Ed). System modelling in Cellular Biology. Cambridge, MA: MIT Press 2005: vii-xiv
  • 84 Pevzner P. Computational molecular biology. Cambridge, MA: MIT Press 2000
  • 85 Pietschmann H. Phänomenologie der Naturwissenschaft: Wissenschaftstheoretische und philosophische Probleme der Physik. Wien: Ibera 2007
  • 86 Prigogine I. Thermodynamics of Irreversible Processes Second Edition. New York: Wiley 1961
  • 87 Quarteroni A, Formaggia L, Veneziani A. (Eds). Complex Systems in Biomedicine. Berlin: Springer 2006
  • 88 Redish AD, Johnson A. A computational model of craving and obsession.  Ann N Y Acad Sci. 2007;  1104 324-339
  • 89 Rohlff C, Hollis K. Modern proteomic strategies in the study of complex neuropsychiatric disorders.  Biolog Psychiatry. 2003;  53 ((10)) 847-853
  • 90 Savageau M. Biochemical Systems Analysis: A Study of Function and Design in Molecular Biology. Reading, MA: Addison-Wesley 1976
  • 91 Schlösser RGM, Koch C, Wagner G. Assessing the state space of the brain with fMRI: An integrateive view of Current Methods.  Pharamcopsychiatry. 2007;  40 ((Suppl.1)) S85-S92
  • 92 Schmitz Y, Schmauss C, Sulzer D. Altered dopamine release and uptake kinetics in mice lacking D2 receptors.  J Neurosci. 2002;  22 ((18)) 8002-8009
  • 93 Searle JR. Mind. A Brief Introduction. New York: Oxford Univ Press 2005
  • 94 Sel’kov EE. Self-oscillations in glycolysis.  Europ J Biochem. 1968;  4 79
  • 95 Seeman P. Atypical antipsychotics: mechanism of action.  Can J Psychiatry. 2002;  47 ((1)) 27-38
  • 96 Shepherd G. The synaptic organization of the brain. New York: Oxford Univ Press 2004
  • 97 Shepherd G. Neurobiology. New York: Oxford Univ Press 1994
  • 98 Shiflet AB, Shiflet GW. Introduction to Computational Science. Princeton: Princeton University Press 2006
  • 99 Singer W. Neuronal synchrony: a versatile code for the definition of relations?.  Neuron. 1999;  24 49-65
  • 100 Sober E. Philosophy of biology. Bolder: Westview Press 2000
  • 101 Sterling Sauer UJ, Doyle F. J Doyle Complexity and robustness of cellular systems. In: Szallasi Z, Stelling J, Periwal V (Ed). System modeling in cellular biology. Cambridge, MA: MIT Press 2006: 19-39
  • 102 Sterman J. Business dynamics. New York: McGraw-Hill 2000
  • 103 Strogatz StH. Nonlinear Dynamics and Chaos. With Applications to Physics, Biology, Chemistry and Engineering. New York: The Perseus Books Group 2001
  • 104 Svenningsson P, Nishi A, Fisone G, Girault JA, Nairn AC, Greengard P. DARPP-32: an integrator of neurotransmission.  Annu Rev Pharmacol Toxicol. 2004;  44 269-296
  • 105 Svenningsson P, Nairn AC, Greengard P. DARPP-32 mediates the actions of multiple drugs of abuse.  AAPS J. 2005;  7 ((2)) E353-E360
  • 106 Szallasi Z, Stelling J, Periwal V. (Ed). System modeling in cellular biology. Cambridge, MA: MIT Press 2006
  • 107 Tabachnick BG, Fidell LS. Using Multivariate Statistics Allyn & Bacon Instock. 2007; 
  • 108 Thompson JL, Pogue-Geile MF, Grace AA. Developmental pathology, dopamine and stress: a model for the age of onset of schizophrenia symptoms.  Schizophr Bulletin. 2004;  30 ((4)) 875-900
  • 109 Thome J. Molekulare Psychiatrie. Bern: Huber 2004
  • 110 Tretter F. Systemwissenschaft in der Medizin.  Deutsches Ärzteblatt. 1989;  43 3198-3209
  • 111 Tretter F. Systemtheorie im klinischen Kontext. Lengerich: Pabst Science Publisher 2005
  • 112 Tretter F. Die Gehirn-Geist-Debatte – Wissenschaftstheoretische Probleme in Hinblick auf die Psychiatrie 1.  Nervenarzt. 2007;  78 ((5)) 498 , 501–504
  • 113 Tretter F, Scherer J. Schizophrenia, neurobiology and the methodology of systemic modeling.  Pharmacopsychiatry. 2006;  39 ((Suppl.1)) S26-S42
  • 114 Tretter F, Müller W. , (Eds) Computational neuropsychiatry vol 2: The functional architecture of working memory networks in schizophrenia – data and models.  Pharmacopsychiatry. 2007;  40 ((Suppl.1))
  • 115 Tretter F, Albus M. “Computational neuropsychiatry” of working memory disorders in schizophrenia: The network connectivity in prefrontal cortex – data and models.  Pharmacopsychiatry. 2007;  40 ((Suppl.1)) S2-S16
  • 116 Tretter F, Müller W, Carlsson A. , (Eds) Systems Science, Computational Science and Neurobiology of Schizophrenia.  Pharmacopsychiatry. 2006;  39 ((Suppl.1))
  • 117 Tyson JJ. Bringing cartoons to life.  Nature. 2007;  445 823
  • 118 Venter JC, Adams MD, Myers EW, Li PW, Mural RJ. et al . The sequence of the human genome.  Science. 2001;  291 1304-1351
  • 119 Virchow R. Die Cellularpathologie in ihrer Begründung auf physiologische und pathologische Gewebelehre. Berlin: August Hirschwald 1858/CellularPathology. Translated by Frank Chance. New York: Dover 1971
  • 120 Voit E. Computational Analysis of Biochemical Systems. Cambridge: Cambridge Univ Press 2000
  • 121 Wang X-J. Toward a microcircuit model for cognitive deficits in schizophrenia.  Pharmacopsychiatry. 2006;  39 ((Suppl.1)) S80-S87
  • 122 Wassef A, Baker J, Kochan LD. GABA and schizophrenia: a review of basic science and clinical studies.  J Clin Psychopharmacol. 2003;  23 ((6)) 601-640
  • 123 Watts DJ, Strogatz S. Collective dynamics of ‘Small world’ networks.  Nature. 1998;  393 440-442
  • 124 Wiener N. Cybernetics. Cambridge, MA: MIT Press 1948
  • 125 Wightman RM, Amatore C, Engstrom C, Hale PD, Kristensen EW, Kuhr WG, May LJ. Real-time characterization of dopamine overflow and uptake in the rat striatum.  Neuroscience. 1988;  25 ((2)) 513-523
  • 126 Wolfram St A. New Kind of Science. Champaign, IL: Wolfram Media 2002
  • 127 Zaccalo M, Pozzon T. cAMP and Ca2+interplay: a matter of oscillation patterns.  TRENDS in Neuroscience. 2003;  26 ((2)) 53-55

Correspondence

Dr. F. Tretter

Department of Addictions Isar Amper Clincis

Clinic Munich East

85529 Haar/Munich

Germany

Telefon: +49/89/4562 37 08

Fax: +49/89/4562 37 08

eMail: Felix.Tretter@IAK-KMO.de