Horm Metab Res 2008; 40(11): 794-800
DOI: 10.1055/s-2008-1081502
Animals, Clinical

© Georg Thieme Verlag KG Stuttgart · New York

Abdominal Adipose Tissue: Early Metabolic Dysfunction Associated to Insulin Resistance and Oxidative Stress Induced by an Unbalanced Diet

O. R. Rebolledo 1 , C. A. Marra 2 , A. Raschia 1 , S. Rodriguez 1 , J. J. Gagliardino 1
  • 1CENEXA – Center of Experimental and Applied Endocrinology (National University of La Plata-National Research Council, PAHO/WHO Collaborating Center), 60 y 120 La Plata, Argentina
  • 2INIBIOLP – Institute of Biochemical Research (National University of La Plata-National Research Council), 60 y 120 La Plata, Argentina
Further Information

Publication History

received 31.08.2007

accepted 09.04.2008

Publication Date:
11 July 2008 (online)

Abstract

The possible contribution of early changes in lipid composition, function, and antioxidant status of abdominal adipose tissue (AAT) induced by a fructose-rich diet (FRD) to the development of insulin resistance (IR) and oxidative stress (OS) was studied. Wistar rats were fed with a commercial diet with (FRD) or without 10% fructose in the drinking water for 3 weeks. The glucose (G), triglyceride (TG), and insulin (I) plasma levels, and the activity of antioxidant enzymes, lyposoluble antioxidants, total glutathione (GSH), lipid peroxidation as TBARS, fatty acid (FA) composition of AAT-TG as well as their release by incubated pieces of AAT were measured. Rats fed with a FRD have significantly higher plasma levels of G, TG, and I. Their AAT showed a marked increase in content and ratios of saturated to monounsaturated and polyunsaturated FAs, TBARS, and catalase, GSH-transferase and GSH-reductase, together with a decrease in superoxide dismutase and GSH-peroxidase activity, and total GSH, α-tocopherol, β-carotene and lycopene content. Incubated AAT from FRD released in vitro higher amount of free fatty acids (FFAs) with higher ratios of saturated to monounsaturated and polyunsaturated FAs. Our data suggest that FRD induced an early prooxidative state and metabolic dysfunction in AAT that would favor the overall development of IR and OS and further development of pancreatic β-cell failure; therefore, its early control would represent an appropriate strategy to prevent alterations such as the development of type 2 diabetes.

References

  • 1 Saltiel AR. New perspectives into the molecular pathogenesis and treatment of type 2 diabetes.  Cell. 2001;  104 517-529
  • 2 Guthrie JF, Morton JF. Food sources of added sweeteners in the diets of Americans.  J Am Diet Assoc. 2000;  100 43-48
  • 3 Thorburn AW, Storlien LH, Jenkins AB, Khouri S. Fructose induced insulin-resistance and elevated plasma triglycerides in rats.  Am J Clin Nutr. 1989;  49 1155-1163
  • 4 Dai S, Todd ME, Lee S, MacNeill JH. Fructose loading induces cardiovascular metabolic changes in non-diabetic and diabetic rats.  Can J Physiol Pharmacol. 1994;  72 771-781
  • 5 Gutman R, Basilico MZ, Bernal C, Chicco A, Lombardo YB. Long-term administration of a sucrose-rich diet to normal rats: relationship between metabolic and hormonal profiles and morphological changes in the endocrine pancreas.  Metabolism. 1987;  45 1527-1532
  • 6 Catena C, Giacchetti G, Novello M, Colussi G, Cavarape A, Sechi LA. Cellular mechanisms of insulin resistance in rats with fructose-induced hypertension.  Am J Hyperten. 2003;  16 973-978
  • 7 Tobey TA, Mondon CE, Zavaroni I, Reaven GM. Mechanisms of insulin resistance in fructose-fed rats.  Metabolism. 1982;  31 608-612
  • 8 Reaven GM. Role of insulin resistance in human disease.  Diabetes. 1988;  37 1595-1607
  • 9 Furukawa S, Fujita T, Shimabukuro M, Iwaki M, Yamada Y, Nakajima Y, Nakayama O, Makishima M, Matsuda M, Shimomura I. Increased oxidative stress in obesity and its impact on metabolic syndrome.  J Clin Invest. 2004;  114 1752-1761
  • 10 Wolff SP, Dean RT. Glucose autoxidation and protein modification. The potential role of “autoxidative glycosylation” in diabetes.  Biochem J. 1987;  245 243-250
  • 11 Brownlee M. Negative consequences of glycation.  Metabolism. 2000;  49 9-13
  • 12 Lyons TJ, Jenkins AJ. Glycation, oxidation, and lipoxidation in the development of the complications of diabetes: a carbonyl stress hypothesis.  Diabetes Rev. 1997;  5 365-391
  • 13 Busserolles J, Gueux E, Rock E, Mazur A, Rayssiguier Y. Substituting honey for refined carbohydrates protects rats from hypertriglyceridemic and prooxidative effects of fructose.  J Nutr. 2002;  11 3379-3382
  • 14 Faure P, Rossini E, Lafond JL, Richards MJ, Favier A, Halimi S. Vitamin E improves the free radical defense system potential and insulin sensitivity of rats fed high fructose diets.  J Nutr. 1997;  127 103-107
  • 15 MacDonald RB. Influence of dietary sucrose on biological aging.  Am J Clin Nutr. 1995;  62 284S-293S
  • 16 Busserolles J, Rock E, Geux E, Mazur A, Grolier P, Rayssiguier Y. Short-term consumption of a high sucrose diet has a pro-oxidant effect in rats.  Br J Nutr. 2002;  87 337-342
  • 17 Busserolles J, Zimowska W, Rock E, Raissiguier Y, Mazur A. Rats fed a high sucrose diet have altered heart antioxidant enzyme activity and gene expression.  Life Sci. 2002;  71 1303-1312
  • 18 Nandhini ATA, Thirunavukkarasu V, Ravichandran MK, Anuradha CV. Effect of taurine on biomarkers of oxidative stress in tissues of fructose-fed insulin-resistant rats.  Singapore Med J. 2005;  46 82-87
  • 19 Thirunavukkarasu V, Nandhini ATA, Anuradha CV. Cardiac lipids and antioxidant status in high fructose rats and the effect of alpha-lipoic acid.  Nutr Metab Cardiovasc Dis. 2004;  14 351-357
  • 20 Girard A, Madani S, Boukortt F, Cherkaoui-Malki M, Belleville J, Prost J. Fructose-enriched diet modifies antioxidant status and lipid metabolism in spontaneously hypertensive rats.  Nutrition. 2006;  22 758-766
  • 21 Matthews DR, Hosker JP, Rudenski AS, Naylor BA, Treacher DF, Turner RC. Homeostasis model assessment: insulin resistance and beta-cell function for fasting plasma glucose and insulin concentrations in man.  Diabetologia. 1985;  28 412-419
  • 22 Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction.  Anal Biochem. 1979;  95 351-358
  • 23 Asensi M, Sastre J, Pallardo FV, García de la Asunción J, Estrela JM, Vina JA. High-performance liquid chromatography method for measurement of oxidized glutathion in biological samples.  Anal Biochem. 1994;  217 323-328
  • 24 Brigelius R, Muckel C, Akerboom TP, Sies H. Identification and quantitation of glutathione in hepatic protein mixed disulfides and its relationship to glutathione disulfide.  Biochem Pharmacol. 1983;  32 2529-2534
  • 25 Buttriss JL, Diplock AT. High-Performance liquid chromatography methods for vitamin E in tissues.  Methods Enzymol. 1984;  105 131-138
  • 26 Bagnati M, Bordone R, Perugini C, Cau C, Albano E, Bellomo G. Cu(I) availability paradoxically antagonizes antioxidant consumption and lipid peroxidation during the initiation phase of copper-induced LDL oxidation.  Biochem Biophys Res Commun. 1998;  253 235-240
  • 27 Aebi H. Catalase in vitro.  Methods Enzymol. 1984;  105 121-126
  • 28 Flohé L, Ötting F. Superoxide dismutase assays.  Methods Enzymol. 1984;  105 93-104
  • 29 Wheeler MD, Nakagami M, Bradford BU, Uesugi T, Mason RP, Connor HD, Dikalova A, Kadiiska M, Thurman RG. Overexpression of manganese superoxide dismutase prevents alcohol-induced liver injury in the rat.  J Biol Chem. 2001;  276 36664-36672
  • 30 Habig WH, Pabst MJ, Jakoby WB. Glutathione-S-transferases. The first enzymatic step in mercapturic acid formation.  J Biol Chem. 1984;  249 7130-7139
  • 31 Carlberg I, Mannervick B. Glutathione reductase.  Methods Enzymol. 1985;  113 484-490
  • 32 Folch J, Lees M, Sloane GH. A simple method for the isolation and purification of total lipids from animal tissues.  J Biol Chem. 1957;  226 497-509
  • 33 Marra CA, Alaniz MJT de. Incorporation and metabolic conversion of saturated and unsaturated fatty acids in SK-Hep1 human hepatoma cells in culture.  Mol Cell Biochem. 1992;  117 107-118
  • 34 Duncombe WB. The cholorimetric microdetermination of long chain fatty acids.  Biochem J. 1963;  88 7-10
  • 35 Stumvoll M, Tataranni PA, Stefan N, Vozarova B, Bogardus C. Glucose allostasis.  Diabetes. 2003;  52 903-909
  • 36 Alzugaray ME, García ME, Rossi JPFC, Gagliardino JJ. Effects of fructose-rich diet-induced insulin resistance on PMCA isoform transcription, expression and activity in rat pancreatic islet and its relationship with insulin secretion.  EASD Islet Study Group Symposium. 2006;  , Elsinore Denmark 17–19 September 2006
  • 37 Katsurada A, Iritani N, Fukuda H, Matsumura Y, Nishimoto N, Noguchi T, Tanaka T. Effects of nutrients and hormones on transcriptional and post-transcriptional regulation of fatty acid synthase in rat liver.  Eur J Biochem. 1990;  190 427-433
  • 38 Beck-Nielsen H, Pedersen O, Schwart-Sorensen N. Effects of diet on the cellular insulin binding and the insulin-sensitivity in young healthy subjects.  Diabetologia. 1978;  15 289-296
  • 39 Mayes PA. Intermediary metabolism of fructose.  Am J Clin Nutr. 1993;  58 754S-765S
  • 40 Hara T, Cameron-Smith D, Cooney GJ, Kusunoki M, Tsutsumi K, Storlien LH. The action of a novel lipoprotein lipase activator, NO-1886, in hypertriglyceridemiac fructose-fed rats.  Metabolism. 1998;  47 149-153
  • 41 Picard F, Boivin A, Lalonde J, Deshaies Y. Resistance of adipose tissue lipoproteinlipase to insulin action in rats fed an obesity-promoting diet.  Am J Physiol Endocr Metab. 2002;  282 E412-E418
  • 42 Dringen R. Metabolism and functions of glutathione in brain.  Progress Neurobiol. 2000;  62 649-671
  • 43 Pincemail J, Bonjean K, Cayeux K, Defraigne JO. Physiological action of antioxidant defenses.  Nutrition Clinique et Métabolisme. 2002;  16 233-239
  • 44 Girard A, Madami S, El Boustani ES, Belleville J, Prosa J. Changes in lipid metabolism and antioxidant defense status in spontaneously hypertensive rats and Wistar rats fed a diet enriched with fructose and saturated fatty acids.  Nutrition. 2005;  21 240-248
  • 45 Martín-Gallan P, Carrascosa A, Giussinye M, Domínguez C. Biomarkers of diabetes-associated oxidative stress and antioxidant status in young patients with or without subclinical complications.  Free Rad Biol Med. 2003;  34 1563-1574
  • 46 Atli T, Keven K, Avci A, Kutlay S, Turkcapar N, Varli M, Aras S, Ertug E, Canbolat O. Oxidative stress and antioxidant status in elderly diabetes mellitus and glucose intolerance patients.  Arch Gerontol Geriatr. 2004;  39 269-275
  • 47 Efe H, Rirci D, Deber O, Yildirmis S, Uydu HA, Orem C. Erytrhocyte antioxidant enzyme activities and lipid peroxidation in patients with types IIb and IV hyperlipoproteinemias.  Tohoku J Exp Med. 2004;  202 163-172
  • 48 Schettler V, Krontal J, Scheel A, Wieland E. No acute impact of lipid apheresis treatment on free radical scavenging enzyme gene expression in white blood cells.  Eur J Clin Invest. 2003;  33 134-140
  • 49 Montanaro A, Lombardo YB, González MS, Bernasconi AM, Chicco A, Rimoldi OJ, Bajabe JC, Brenner RR. Effect of troglitazone on the desaturases in a rat model of insulin-resistance induced by a sucrose-rich diet.  Prostaglandins Leukot Essent Fatty Acids. 2005;  72 241-250
  • 50 Reddy JK, Rao MS. Lipid metabolism and liver inflammation. II. Fatty liver disease and fatty acid oxidation.  Am J Physiol Gastrointest Liver Physiol. 2006;  290 G852-G858
  • 51 Ackerman Z, Oron-Herman M, Pappo O, Link G, Sela BA. Fructose-induced fatty liver disease. Hepatic effects of blood pressure and plasma triglyceride reduction.  Hypertension. 2005;  45 1012-1018
  • 52 Smith U, Cahlin E, Schersten T. Sucrose feeding in man.  Acta Med Scand. 1973;  194 147-150
  • 53 Soria A, D’Alessandro ME, Lombardo YB. Duration of feeding on a sucrose-rich diet determines metabolic and morphological changes in rat adipocytes.  J Appl Physiol. 2001;  91 2109-2116
  • 54 Vrána A, Fábry P, Slabochová Z, Kazdová L. Effect of dietrary fructose on free fatty acid release from adipose tissue and serum free fatty acid concentration in the rat.  Nutr Metab. 1974;  17 74-83
  • 55 Kamari Y, Grossman E, Oron-Herman M, Peleg E, Shabtay Z, Shamiss A, Sharabi Y. Metabolic stress with high carbohydrate diet increases adiponectin levels.  Horm Metab Res. 2007;  39 384-388
  • 56 Robertson PR. Chronic oxidative stress as a central mechanism for glucose toxicity in pancreatic islet beta cells in diabetes.  J Biol Chem. 2004;  279 42351-42354
  • 57 Kharroubi I, Ladriere L, Cardozo AK, Dogusan Z, Cnop M, Eizirik DL. Free fatty acids and cytokines induce pancreatic beta-cell apoptosis by different mechanisms: role of nuclear factor-kappa B and endoplasmic reticulum stress.  Endocrinology. 2004;  145 5087-5096
  • 58 Del Zotto H, Borelli MI, Flores L, Garcia ME, Gomez Dumm CL, Chicco A, Lombardo YB, Gagliardino JJ. Islet neogenesis: an apparent key component of longterm pancreas adaptation to increased insulin demand.  J Endocrinol. 2004;  183 321-330
  • 59 Elliot SS, Keim NL, Stern JS, Teff K, Havel PJ. Fructose, weight gain and insulin resistance syndrome.  Am J Clin Nutr. 2002;  76 911-922
  • 60 Putnam JJ, Allshouse JE. Food consumption, prices and expenditures. Economic research service. Washington (DC); USDA 1999
  • 61 Bray GA, Nielsen SJ, Popkin BM. Consumption of high-fructose corn syrup in beverages may play a role in the epidemic of obesity.  Am J Clin Nutr. 2004;  79 537-543

Correspondence

O. R. Rebolledo

Center of Experimental and Applied Endocrinology (National University of La Plata-National Research Council PAHO/WHO Collaborating Center)

60 y 120 La Plata

Argentina

Phone: +54/221/423 67 12

Fax: +54/221/422 20 81

Email: oscar_rebolledo@yahoo.com.ar