Subscribe to RSS
DOI: 10.1055/s-2008-1082548
© Sonntag Verlag in MVS Medizinverlage Stuttgart GmbH & Co. KG
Das Potenzial PCR-basierter Markermethoden zur Identifizierung von Arzneipflanzen
Publication History
Publication Date:
24 July 2008 (online)
Zusammenfassung
Molekularbiologische Methoden sind mittlerweile in der analytischen Praxis weitverbreitet und werden z.B. bei der Sortencharakterisierung in der Landwirtschaft eingesetzt. Hinsichtlich der Anwendung bei Stoffen, Zubereitungen und Fertigarzneimitteln aus pflanzlichem Material besteht das Problem, dass die DNA im Verlauf des Herstellungsprozesses in unterschiedlichem Maße abgebaut werden kann. Daher sind die Ergebnisse von PCR-Techniken, die auf zufälligen Primern basieren, nur schlecht reproduzierbar und für die Identifizierung der jeweiligen Arzneipflanzen weniger geeignet. Am Beispiel der Kamille und einiger möglicher Verfälschungen wird gezeigt, dass die Untersuchung der sogenannten ITS-Region mit PCR-Techniken die Möglichkeit bietet, auch in prozessierten Drogen das eingesetzte Pflanzenmaterial zu identifizieren. Die vorgestellte Methode ist auf eine einfache und robuste Anwendung an einer Vielzahl von Pflanzenmaterialien optimiert, sodass damit gängige analytische Verfahren zur Identifizierung von Arzneipflanzen ergänzt werden können.
Summary
The potential of PCR-based marker methods to identify medicinal plants
Methods from molecular biology are now widely applied in analytical praxis. They are routinely used to address problems in forensic or to characterise cultivars in agriculture. The degradation of DNA during intensive processing is a major obstacle concerning the application of herbal substances, herbal preparations and finished herbal medicinal products. Therefore, results of PCR-techniques based on random primers are less reproducible and not always suitable in identifying medicinal plants. For chamomile and putative adulterations, it is demonstrated that the application of PCR-techniques to amplify ITS-regions is a suitable approach for plant material identification including highly processed products. The method was optimised especially with respect to a simple and robust application on a broad variety of plant material in order to complement existing analytical methods for identification of medicinal plants.
Schlüsselwörter
Arzneipflanzen - pflanzliche Fertigarzneimittel - Qualitätskontrolle - Identifizierung - rRNA Gen-Cluster - Sequenzierung - ITS
Key words
Quality control - identification - herbal medicinal products - rRNA gene cluster - comparative sequencing - ITS
Literatur
- 1 Baldwin BG, Sanderson MJ, et al.. The ITS region of nuclear ribosomal DNA – a valuable source of evidence on angiosperm phylogeny. Ann Mo Bot Gard. 1995; 82 247-277
- 2 Baum BR, Mechanda S, et al.. Predicting quantitative phytochemical markers in single Echinacea plants or clones from their DNA fingerprints. Phytochemistry. 2001; 56 543-549
- 3 Botstein D, White RL, et al.. Construction of a genetic linkage map in man using restriction fragment length polymorphism. Am J Hum Genet. 1980; 32 314-331
- 4 Cheng KT, Su B, et al.. RAPD analysis of Astragalus medicines marketed in Taiwan. Am J Chin Med. 2000; 28 273-278
- 5 Crockett SL, Douglas AW, et al.. Genetic profiling of Hypericum (St. John’s Wort) species by nuclear ribosomal ITS sequence analysis. Planta Med. 2004; 70 929-935
- 6 Dhiman B, Singh M. Molecular detection of cashew husk (Anacardium occidentale) adulteration in market samples of dry tea (Camellia sinensis). Planta Med. 2003; 69 882-884
- 7 Gilmore S, Peakall R. Isolation of microsatellite markers in Cannabis sativa L. (marijuana). Mol Ecol Notes. 2003; 3 105-107
- 8 Hayashi K. PCR-SSCP: a method for detection of mutations. Genet Anal Tech Appl. 1992; 9 73-79
- 9 Hon CC, Chow YC, et al.. Genetic authentication of ginseng and other traditional Chinese medicine. Acta Pharmacol Sin. 2003; 24 841-846
- 10 Kojoma M, Iida O, et al.. DNA fingerprinting of Cannabis sativa using inter-simple sequence repeat (ISSR) amplification. Planta Med. 2002; 68 60-63
- 11 Konieczny A, Ausbel FM. A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J. 1993; 4 403-410
- 12 Kumar LD, Kathirvel M, et al.. DNA profiling of disputed chilli samples (Capsicum annum) using ISSR-PCR and FISSR-PCR marker assays. Forensic Sci Int. 2001; 1 63-68
- 13 Long C, Kakiuchi N, et al.. Phylogenetic analysis of the DNA sequence of the noncoding region of nuclear ribosomal DNA and chloroplast of Ephedra plants in China. Planta Med. 2004; 70 1080-1084
- 14 Matsuda M, Kojima E, et al.. Novel primers designed for microsatellite loci in Eucalyptus and identification by PCR fingerprints. Nucleic Acids Symp Ser. 1997; 37 169-170
- 15 Na HJ, Um JY, et al.. Molecular discrimination of medicinal astragali radix by RAPD analysis. Immunopharmacol Immunotoxicol. 2004; 26 265-272
- 16 Paran I, Michelmore RW. Development of reliable PCR based markers linked to downy mildew resistance genes in lettuce. Theor Appl Genet. 1993; 85 985-993
- 17 Pennisi E. Taxonomy – wanted: A barcode for plants. Science. 2007; 318(5848) 190-191
- 18 Piotrowski A, Ochocka JR, et al.. Molecular genetic survey of European mistletoe (Viscum album) subspecies with allelespecific and dCAPS type markers specific for chloroplast and nuclear DNA sequences. Planta Med. 2003; 69 939-944
- 19 Prince JP, Lackney VK, et al.. A Survey of DNA polymorphism within the genus Capsicum and the fingerprinting of pepper cultivars. Genome. 1995; 38 224-231
- 20 Schilcher H. Die Kamille: Handbuch für Ärzte, Apotheker und andere Naturwissenschaftler. Stuttgart; Wiss. Verl.-Ges. 1987
- 21 Small RL, Cronn RC, et al.. L. A. S. JOHNSON REVIEW No. 2. Use of nuclear genes for phylogeny reconstruction in plants. Aust Syst Bot. 2004; 17 145-170
- 22 Steane DA, Vaillancourt RE, et al.. Development and characterisation of microsatellite loci in Eucalyptus globulus (Myrtaceae). Silvae Genet. 2001; 50 89-91
- 23 Techen N, Khan IA, et al.. The use of polymerase chain reaction (PCR) for the identification of Ephedra DNA in dietary supplements. Planta Med. 2006; 72 241-247
- 24 Vos P, Hogers R, et al.. AFLP – a new technique for DNA-fingerprinting. Nucleic Acids Res. 1995; 23 4407-4414
- 25 Wang J, Ha WY, et al.. Application of sequence characterized amplified region (SCAR) analysis to authenticate Panax species and their adulterants. Planta Med. 2001; 67 781-783
- 26 Weber JL, May PE. Abundant class of human DNA polymorhisms which can be typed using the polymerare chain reaction. Am J Hum Genet. 1989; 44 388-396
- 27 Weising K, Nybom H, Wolff K, Kahl G. DNA Fingerprinting in Plants – Principles, Methods, and Applications. 2nd ed. Boca Raton; CRC Press 2005
- 28 Williams JG, Kubelik AR, et al.. DNA polymorphisms amplified by arbitrary primers are useful as genetic markers. Nucleic Acids Res. 1990; 18 6531-6535
- 29 Wolf HT, Zundorf I, et al.. Characterization of Echinacea species and detection of possible adulterations by RAPD analysis. Planta Med. 1999; 65 773-774
- 30 Wolf HT. Genomanalysen an Heil- und Giftpflanzen: Identitätsprüfung und Verwandtschaftsbestimmung [Dissertation]. Frankfurt; Johann Wolfgang von Goethe-Universität 1999
- 31 Wolfe KH, Li WH, et al.. Rates of nucleotide substitution vary greatly among plant mitochondrial, chloroplast, and nuclear DNAs. P Natl Acad Sci USA. 1987; 84 9054-9058
- 32 Yan XF, Lian CL, et al.. Development of microsatellite markers in ginkgo (Ginkgo biloba L.) Mol Ecol Notes. 2006; 6 301-302
- 33 Yang DY, Fushimi H, et al.. Polymerase chain reaction-restriction fragment length polymorphism (PCR-RFLP) and amplification refractory mutation system (ARMS) analyses of medicinally used Rheum species and their application for identification of Rhei rhizoma. Biol Pharm Bull. 2004; 27 661-669
- 34 Yang M, Zhang D, et al.. A molecular marker that is specific to medicinal rhubarb based on chloroplast trnL/trnF sequences. Planta Med. 2001; 67 784-786
- 35 Zietkiewicz E, Rafalski A, et al.. Genome fingerprinting by simple sequence repeat (SSR)-anchored polymerase chain reaction amplification. Genomics. 1994; 20 176-183
Priv.-Doz. Dr. Werner Knöß
Bundesinstitut für Arzneimittel und Medizinprodukte
Kurt-Georg-Kiesinger-Allee 3
53175 Bonn
Email: w.knoess@bfarm.de