Thromb Haemost 2004; 92(01): 140-150
DOI: 10.1160/TH03-07-0491
Endothelium and Vascular Development
Schattauer GmbH

P-cresol, a uremic retention solute, alters the endothelial barrier function in vitro

Claire Cerini
1   INSERM EMI0019, Faculté de Pharmacie, Université de la Méditerranée, Marseille, France
,
Laetitia Dou
1   INSERM EMI0019, Faculté de Pharmacie, Université de la Méditerranée, Marseille, France
,
Francine Anfosso
1   INSERM EMI0019, Faculté de Pharmacie, Université de la Méditerranée, Marseille, France
,
Florence Sabatier
1   INSERM EMI0019, Faculté de Pharmacie, Université de la Méditerranée, Marseille, France
,
Valérie Moal
2   Service de Néphrologie, Hôpital de la Conception, Marseille, France
,
Griet Glorieux
3   Nephrology Department, University Hospital, Ghent, Belgium
,
Rita De Smet
3   Nephrology Department, University Hospital, Ghent, Belgium
,
Raymond Vanholder
3   Nephrology Department, University Hospital, Ghent, Belgium
,
Françoise Dignat-George
1   INSERM EMI0019, Faculté de Pharmacie, Université de la Méditerranée, Marseille, France
,
José Sampol
1   INSERM EMI0019, Faculté de Pharmacie, Université de la Méditerranée, Marseille, France
,
Yvon Berland
2   Service de Néphrologie, Hôpital de la Conception, Marseille, France
,
Philippe Brunet
1   INSERM EMI0019, Faculté de Pharmacie, Université de la Méditerranée, Marseille, France
2   Service de Néphrologie, Hôpital de la Conception, Marseille, France
› Author Affiliations
Financial support: This work was financed by the Institut National de la Santé et de la Recherche Médicale (INSERM)
Further Information

Publication History

Received 29 July 2003

Accepted after resubmission 29 March 2004

Publication Date:
29 November 2017 (online)

Summary

Patients with chronic renal failure (CRF) exhibit endothelial dysfunction, which may involve uremic retention solutes that accumulate in blood and tissues. In this study, we investigated the in vitro effect of the uremic retention solute p-cresol on the barrier function of endothelial cells (HUVEC). P-cresol was tested at concentrations found in CRF patients, and since p-cresol is protein-bound, experiments were performed with and without physiological concentration of human albumin (4 g/dl).With albumin, we showed that p-cresol caused a strong increase in endothelial permeability after a 24-hour exposure. Concomitant with this increase in endothelial permeability, p-cresol induced a reorganization of the actin cytoskeleton and an alteration of adherens junctions. These molecular events were demonstrated by the decreased staining of cortical actin, associated with the formation of stress fibers across the cell, and by the decreased staining of junctional VE-cadherin. This decrease in junctional VE-cadherin staining was not associated with a reduction of membrane expression. Without albumin, the effects of p-cresol were more pronounced. The specific Rho kinase inhibitor, Y-27632, inhibited the effects of p-cresol, indicating that p-cresol mediates the increase in endothelial permeability in a Rho kinase-dependent way. In conclusion, these results show that p-cresol causes a severe dysfunction of endothelial barrier function in vitro and suggest this uremic retention solute may participate in the endothelium dysfunction observed in CRF patients.

 
  • References

  • 1 Morris ST, Jardine AG. The vascular endothelium in chronic renal failure. J Nephrol 2000; 13: 96-105.
  • 2 Bonomini M, Reale M, Santarelli P. et al. Serum levels of soluble adhesion molecules in chronic renal failure and dialysis patients. Nephron 1998; 79: 399-407.
  • 3 Mezzano D, Tagle R, Pais E. et al. Endothelial cell markers in chronic uremia: relationship with hemostatic defects and severity of renal failure. Thromb Res 1997; 88: 465-72.
  • 4 Segarra A, Chacon P, Martinez-Eyarre C. et al. Circulating levels of plasminogen activator inhibitor type-1, tissue plasminogen activator, and thrombomodulin in hemodialysis patients: biochemical correlations and role as independent predictors of coronary artery stenosis. J Am Soc Nephrol 2001; 12: 1255-63.
  • 5 Kari JA, Donald AE, Vallance DT. et al. Physiology and biochemistry of endothelial function in children with chronic renal failure. Kidney Int 1997; 52: 468-72.
  • 6 Hand MF, Haynes WG, Webb DJ. Hemodialysis and L-arginine, but not D-arginine, correct renal failure-associated endothelial dysfunction. Kidney Int 1998; 53: 1068-77.
  • 7 Pannier B, Guerin AP, Marchais SJ. et al. Postischemic vasodilation, endothelial activation, and cardiovascular remodeling in endstage renal disease. Kidney Int 2000; 57: 1091-9.
  • 8 Thambyrajah J, Landray MJ, McGlynn FJ. et al. Abnormalities of endothelial function in patients with predialysis renal Failure. Heart 2000; 83: 205-9.
  • 9 Harper SJ, Tomson CR, Bates DO. Human uremic plasma increases microvascular permeability to water and proteins in vivo. Kidney Int 2002; 61: 1416-22.
  • 10 Vanholder R, De Smet R. Pathophysiologic effects of uremic retention solutes. J Am Soc Nephrol 1999; 10: 1815-23.
  • 11 Vanholder R, De Smet R, Glorieux G. European Uremic Toxin Work Group (EUTox). et al. Review on uremic toxins: classification, concentration, and interindividual variability. Kidney Int 2003; 63: 1934-43.
  • 12 Zhang C, Cai Y, Adachi MT. et al. Homocysteine induces programmed cell death in human vascular endothelial cells through activation of the unfolded protein response. J Biol Chem 2001; 276: 35867-74.
  • 13 Otero K, Martinez F, Beltran A. et al. Albumin-derived advanced glycation endproducts trigger the disruption of the vascular endothelial cadherin complex in cultured human and murine endothelial cells. Biochem J 2001; 359: 567-74.
  • 14 Sengoelge G, Fodinger M, Skoupy S. et al. Endothelial cell adhesion molecule and PMNL response to inflammatory stimuli and AGE-modified fibronectin. Kidney Int 1998; 54: 1637-51.
  • 15 Levin RI, Kantoff PW, Jaffe EA. Uremic levels of oxalic acid suppress replication and migration of human endothelial cells. Arteriosclerosis 1990; 10: 198-207.
  • 16 De Smet R, David F, Sandra P. et al. A sensitive HPLC method for the quantification of free and total p-cresol in patients with chronic renal failure. Clin Chim Acta 1998; 278: 1-21.
  • 17 Hida M, Aiba Y, Sawamura S. et al. Inhibition of the accumulation of uremic toxins in the blood and their precursors in the feces after oral administration of Lebenin®, a lactic acid bacteria preparation, to uremic patients undergoing hemodialysis. Nephron 1996; 74: 349-55.
  • 18 Vanholder R, De Smet R, Lesaffer G. P-cresol: a toxin revealing many neglected but relevant aspects of uraemic toxicity. Nephrol Dial Transplant 1999; 12: 2813-15.
  • 19 Vanholder R, De Smet R, Waterloos MA. et al. Mechanisms of uremic inhibition of phagocyte reactive species production: Characterization of the role of p-cresol. Kidney Int 1995; 47: 510-7.
  • 20 Dou L, Bertrand E, Cerini C. et al. The uremic solutes p-cresol and indoxyl sulfate inhibit endothelial proliferation and wound repair. Kidney Int 2004; 65: 442-51.
  • 21 De Smet R, Van Kaer J, Van Vlem B. et al. Toxicity of free p-cresol: a prospective and cross-sectional analysis. Clin Chem 2003; 49: 470-8.
  • 22 Dejana E, Spagnuolo R, Bazzoni G. Interendothelial junctions and their role in the control of angiogenesis, vascular permeability and leukocyte transmigration. Thromb Haemost 2001; 86: 308-15.
  • 23 Aepfelbacher M, Essler M. Disturbance of endothelial barrier function by bacterial toxins and atherogenic mediators: a role for Rho/Rho kinase. Cell Microbiol 2001; 03: 649-58.
  • 24 Essler M, Amano M, Kruse HJ. et al. Thrombin inactivates myosin light chain phosphatase via Rho and its target Rho kinase in human endothelial cells. J Biol Chem 1998; 273: 21867-74.
  • 25 Lampugnani MG, Corada M, Caveda L. et al. The molecular organization of endothelial cell to cell junctions: differential association of plakoglobin, beta-catenin, and alpha-catenin with vascular endothelial cadherin (VE-cadherin). J Cell Biol 1995; 129: 203-17.
  • 26 Navarro P, Caveda L, Breviario F. et al. Catenin-dependent and -independent functions of vascular endothelial cadherin. J Biol Chem 1995; 270: 30965-72.
  • 27 Jaffe EA, Nachman RL, Becker CG. et al. Culture of human endothelial cells derived from umbilical veins. Identification by morphologic and immunologic criteria. J Clin Invest 1973; 52: 2745-56.
  • 28 Poncelet P, Carayon P. Cytofluorometric quantification of cell-surface antigens by indirect immunofluorescence using monoclonal antibodies. J Immunol Methods 1985; 85: 65-74.
  • 29 Royall JA, Berkow RL, Beckman JS. et al. Tumor necrosis factor and interleukin 1 alpha increase vascular endothelial permeability. Am J Physiol 1989; 257: L399-L410.
  • 30 Molony L, Armstrong L. Cytoskeletal reorganizations in human umbilical vein endothelial cells as a result of cytokine exposure. Exp Cell Res 1991; 196: 40-8.
  • 31 Lampugnani MG, Resnati M, Raiteri M. et al. A novel endothelial-specific membrane protein is a marker of cell-cell contacts. J Cell Biol 1992; 118: 1511-22.
  • 32 Uehata M, Ishizaki T, Satoh H. et al. Calcium sensitization of smooth muscle mediated by a Rho-associated protein kinase in hypertension. Nature 1997; 389: 990-4.
  • 33 Vouret-Craviari V, Grall D, Flatau G. et al. Effects of cytotoxic necrotizing factor 1 and lethal toxin on actin cytoskeleton and VE cadherin localization in human endothelial cell monolayers. Infect Immun 1999; 67: 3002-8.
  • 34 Breviario F, Caveda L, Corada M. et al. Functional properties of human vascular endothelial cadherin (7B4/cadherin-5), an endothelium-specific cadherin. Arterioscler Thromb Vasc Biol 1995; 15: 1229-39.
  • 35 Corada M, Mariotti M, Thurston G. et al. Vascular endothelial-cadherin is an important determinant of microvascular integrity in vivo. Proc Natl Acad Sci 1999; 96: 9815-20.
  • 36 Wong RK, Baldwin AL, Heimark RL. Cadherin-5 redistribution at sites of TNFalpha and IFN-gamma-induced permeability in mesenteric venules. Am J Physiol 1999; 276: H736-H748.
  • 37 Foley RN, Parfrey PS, Harnett JD. et al. Hypoalbuminemia, cardiac morbidity, and mortality in end-stage renal disease. J Am Soc Nephrol 1996; 07: 728-36.
  • 38 Thompson DC, Perera K, Fisher R. et al. Cresol isomers: comparison of toxic potency in rat liver slices. Toxicol Appl Pharmacol 1994; 125: 51-8.
  • 39 Ross R. Atherosclerosis, an inflammatory disease. N Engl J Med 1999; 340: 115-26.
  • 40 Guretzki HJ, Gerbitz KD, Olgemoller B. et al. Atherogenic levels of low density lipoprotein alter the permeability and composition of the endothelial barrier. Atherosclerosis 1994; 107: 15-24.
  • 41 Rangaswamy S, Penn MS, Saidel GM. et al. Exogenous oxidized low-density lipoprotein injures and alters the barrier function of endothelium in rats in vivo. Circ Res 1997; 80: 37-44.
  • 42 Lin SJ, Hong CY, Chang MS. et al. Long-term nicotine exposure increases aortic endothelial cell death and enhances transendothelial macromolecular transport in rats. Arterioscler Thromb 1992; 12: 1305-12.
  • 43 Hempel A, Maasch C, Heintze U. et al. High glucose concentrations increase endothelial cell permeability via activation of protein kinase C alpha. Circ Res 1997; 81: 363-71.
  • 44 Lesaffer G, De Smet R, D’heuvaert T. et al. Kinetics of the protein-bound, lipophilic, uremic toxin p-cresol in healthy rats. Life Sci 2001; 69: 2237-48.