Thromb Haemost 2004; 92(05): 898-924
DOI: 10.1160/TH04-05-0269
Review Article
Schattauer GmbH

The story of the serpin plasminogen activator inhibitor 1: is there any need for another mutant?

Bart De Taeye
1   Laboratory for Pharmaceutical Biology and Phytopharmacology, Faculty of Pharmaceutical Sciences, Katholieke Universiteit Leuven, Belgium
,
Ann Gils
1   Laboratory for Pharmaceutical Biology and Phytopharmacology, Faculty of Pharmaceutical Sciences, Katholieke Universiteit Leuven, Belgium
,
Paul J. Declerck
1   Laboratory for Pharmaceutical Biology and Phytopharmacology, Faculty of Pharmaceutical Sciences, Katholieke Universiteit Leuven, Belgium
› Institutsangaben
Weitere Informationen

Publikationsverlauf

Received 03. Mai 2004

Accepted after resubmission 03. September 2004

Publikationsdatum:
04. Dezember 2017 (online)

Summary

The importance of obtaining insight in the structure/function relationship in the serpin plasminogen activator inhibitor type1 can be understood from the major role PAI-1 plays in different (patho)physiological processes, mainly because of its involvement in the plasminogen/plasmin system. Moreover, during the past years, studies indicated a contribution of PAI-1 to the development of cardiovascular disease in common syndromes such as atherosclerosis, diabetes and hypertension. Furthermore, PAI-1 also inhibits u-PA, attributing a role in phenomena such as cell migration and tissue remodelling. Considering the role of PAI-1 in such various pathogenic pathways, detailed insight into the structure/function relationship in PAI-1 might provide a means of interfering with a given pathological situation without disturbing other physiological processes. Therefore, since the discovery of PAI-1 and the cloning of its cDNA 20 years ago, over 600 PAI-1 variants have been constructed, elucidating the most important structural features of PAI-1. This review gives an overview of the contribution of the different PAI-1 variants to the understanding of the structure/function relationship in PAI-1, based on the different functional features of PAI-1.

 
  • References

  • 1 Andreasen PA, Nielsen LS, Kristensen P. et al. Plasminogen activator inhibitor from human fibrosarcoma cells binds urokinasetype plasminogen activator, but not its proenzyme. J Biol Chem 1986; 261: 7644-51.
  • 2 Ginsburg D, Zeheb R, Yang AY. et al. cDNA cloning of human plasminogen activatorinhibitor from endothelial cells. J Clin Invest 1986; 78: 1673-80.
  • 3 Ny T, Sawdey M, Lawrence D. et al. Cloning and sequence of a cDNA coding for the human betamigrating endothelial-cell-type plasminogen activator inhibitor. Proc Natl Acad Sci U S A 1986; 83: 6776-80.
  • 4 Pannekoek H, Veerman H, Lambers H. et al. Endothelial plasminogen activator inhibitor (PAI): a new member of the Serpin gene family. EMBO J 1986; 05: 2539-44.
  • 5 Carrell R, Travis J. a 1-Antitrypsin and the serpins: variation and countervariation. TIBS 1985; 01: 20-24.
  • 6 Travis J, Salvesen GS. Human plasma proteinase inhibitors. Annu Rev Biochem 1983; 52: 655-709.
  • 7 Carrell RW, Boswell DR. Serpins: the superfamily of plasma serine proteinase inhibitors. In: Barrett, Salvesen editors. Proteinase inhibitors. Elsevier Science. 1986: 403-20.
  • 8 Huber R, Carrell RW. Implications of the three-dimensional structure of alpha 1-antitrypsin for structure and function of serpins. Biochemistry 1989; 28: 8951-66.
  • 9 Schechter I, Berger A. On the size of the active site in proteases. Biochem Biophys Res Commun 1967; 27: 157-62.
  • 10 Gils A, Declerck PJ. Structure-function relationship in serpins: current concepts and controversies. Thromb Haemost 1998; 80: 531-41.
  • 11 Laskowski Jr M, Kato I. Protein inhibitors of proteinases. Annu Rev Biochem 1980; 49: 593-626.
  • 12 Egelund R, Rodenburg KW, Andreasen PA. et al. An ester bond linking a fragment of a serine proteinase to its serpin inhibitor. Biochemistry 1998; 37: 6375-9.
  • 13 Lawrence DA, Ginsburg D, Day DE. et al. Serpin-protease complexes are trapped as stable acyl-enzyme intermediates. J Biol Chem 1995; 270: 25309-12.
  • 14 Lindahl TL, Ohlsson PI, Wiman B. The mechanism of the reaction between human plasminogenactivator inhibitor 1 and tissue plasminogen activator. Biochem J 1990; 265: 109-13.
  • 15 Wilczynska M, Fa M, Ohlsson PI. et al. The inhibition mechanism of serpins Evidence that the mobile reactive center loop is cleaved in the native protease-inhibitor complex. J Biol Chem 1995; 270: 29652-5.
  • 16 Gettins PGW, Patston PA, Olson ST. Serpins: structure, function and biology. Heidelberg; Springer-Verlag: 1996
  • 17 Declerck PJ, De Mol M, Vaughan DE. et al. Identification of a conformationally distinct form of plasminogen activator inhibitor-1, acting as a noninhibitory substrate for tissuetype plasminogen activator. J Biol Chem 1992; 267: 11693-6.
  • 18 Gils A, Declerck PJ. Proteinase specificity and functional diversity in point mutants of plasminogen activator inhibitor 1. J Biol Chem 1997; 272: 12662-6.
  • 19 Sharp AM, Stein PE, Pannu NS. et al. The active conformation of plasminogen activator inhibitor 1, a target for drugs to control fibrinolysis and cell adhesion. Structure 1999; 07: 111-18.
  • 20 Nar H, Bauer M, Stassen JM. et al. Plasminogen activator inhibitor 1 Structure of the native serpin, comparison to its other conformers and implications for serpin inactivation. J Mol Biol 2000; 297: 683-95.
  • 21 Hekman CM, Loskutoff DJ. Endothelial cells produce a latent inhibitor of plasminogen activators that can be activated by denaturants. J Biol Chem 1985; 260: 11581-7.
  • 22 Mottonen J, Strand A, Symersky J. et al. Structural basis of latency in plasminogen activator inhibitor-1. Nature 1992; 355: 270-3.
  • 23 Carrell RW, Stein PE, Fermi G, Wardell MR. Biological implications of a 3 A structure of dimeric antithrombin. Structure 1994; 02: 257-70.
  • 24 Urano T, Strandberg L, Johansson LB. et al. A substrate-like form of plasminogen-activator-inhibitor type 1 Conversions between different forms by sodium dodecyl sulphate. Eur J Biochem 1992; 209: 985-92.
  • 25 Munch M, Heegaard CW, Andreasen PA. Interconversions between active, inert and substrate forms of denatured/refolded type-1 plasminogen activator inhibitor. Biochim Biophys Acta 1993; 1202: 29-37.
  • 26 Aertgeerts K, De Bondt HL, De Ranter CJ. et al. Mechanisms contributing to the conformational and functional flexibility of plasminogen activator inhibitor-1. Nat Struct Biol 1995; 02: 891-7.
  • 27 Carrell RW, Stein PE. The biostructural pathology of the serpins: critical function of sheet opening mechanism. Biol Chem Hoppe Seyler 1996; 377: 1-17.
  • 28 Binder BR, Christ G, Gruber F. et al. Plasminogen activator inhibitor 1: physiological and pathophysiological roles. News Physiol Sci 2002; 17: 56-61.
  • 29 Gils A, Declerck PJ. The structural basis for the pathophysiological relevance of PAI-I in cardiovascular diseases and the development of potential PAI-I inhibitors. Thromb Haemost 2004; 91: 425-37.
  • 30 Durand MK, Bodker JS, Christensen A. et al. Plasminogen activator inhibitor-I and tumour growth, invasion, and metastasis. Thromb Haemost 2004; 91: 438-49.
  • 31 Manchanda N, Schwartz BS. Interaction of single-chain urokinase and plasminogen activator inhibitor type 1. J Biol Chem 1995; 270: 20032-5.
  • 32 Behrendt N, List K, Andreasen PA. et al. The pro-urokinase plasminogen-activation system in the presence of serpin-type inhibitors and the urokinase receptor: rescue of activity through reciprocal pro-enzyme activation. Biochem J 2003; 371: 277-87.
  • 33 Keijer J, Linders M, Wegman JJ. et al. On the target specificity of plasminogen activator inhibitor 1: the role of heparin, vitronectin, and the reactive site. Blood 1991; 78: 1254-61.
  • 34 Hekman CM, Loskutoff DJ. Bovine plasminogen activator inhibitor 1: specificity determinations and comparison of the active, latent, and guanidine-activated forms. Biochemistry 1988; 27: 2911-18.
  • 35 Sherman PM, Lawrence DA, Yang AY. et al. Saturation mutagenesis of the plasminogen activator inhibitor-1 reactive center. J Biol Chem 1992; 267: 7588-95.
  • 36 Sherman PM, Lawrence DA, Verhamme IM. et al. Identification of tissue-type plasminogen activator-specific plasminogen activator inhibitor-1 mutants Evidence that second sites of interaction contribute to target specificity. J Biol Chem 1995; 270: 9301-6.
  • 37 Shubeita HE, Cottey TL, Franke AE. et al. Mutational and immunochemical analysis of plasminogen activator inhibitor 1. J Biol Chem 1990; 265: 18379-85.
  • 38 Keijer J, Ehrlich HJ, Linders M. et al. Vitronectin governs the interaction between plasminogen activator inhibitor 1 and tissuetype plasminogen activator. J Biol Chem 1991; 266: 10700-7.
  • 39 Stefansson S, Yepes M, Gorlatova N. et al. Mutants of plasminogen activator inhibitor-1 designed to inhibit Neutrophil Elastase and Cathepsin G are more effective in vivo than their endogenous inhibitors. J Biol Chem 2004; 279: 29981-7.
  • 40 Ehrlich AJ, Gebbink RK, Keijer J. et al. Alteration of serpin specificity by a protein cofactor Vitronectin endows plasminogen activator inhibitor 1 with thrombin inhibitory properties. J Biol Chem 1990; 265: 13029-35.
  • 41 Madison EL, Goldsmith EJ, Gething MJ. et al. Restoration of serine protease-inhibitor interaction by protein engineering. J Biol Chem 1990; 265: 21423-6.
  • 42 Audenaert AM, Knockaert I, Collen D. et al. Conversion of plasminogen activator inhibitor-1 from inhibitor to substrate by point mutations in the reactive-site loop. J Biol Chem 1994; 269: 19559-64.
  • 43 Tucker HM, Gerard RD. Sequence requirements in the reactive-center loop of plasminogenactivator inhibitor-1 for recognition of plasminogen activators. Eur J Biochem 1996; 237: 180-7.
  • 44 van Meijer M, Roelofs Y, Neels J. et al. Selective screening of a large phage display library of plasminogen activator inhibitor 1 mutants to localize interaction sites with either thrombin or the variable region 1 of tissuetype plasminogen activator. J Biol Chem 1996; 271: 7423-8.
  • 45 Wang Q, Shaltiel S. Distal hinge of plasminogen activator inhibitor-1 involves its latency transition and specificities toward serine proteases. BMC Biochemistry. 2003 04..
  • 46 Chmielewska J, Ranby M, Wiman B. Kinetics of the inhibition of plasminogen activators by the plasminogen-activator inhibitor Evidence for ‘second-site’ interactions. Biochem J 1988; 251: 327-32.
  • 47 Lawrence DA, Strandberg L, Ericson J. et al. Structure-function studies of the SERPIN plasminogen activator inhibitor type 1 Analysis of chimeric strained loop mutants. J Biol Chem 1990; 265: 20293-301.
  • 48 Madison EL, Goldsmith EJ, Gerard RD. et al. Serpin-resistant mutants of human tissuetype plasminogen activator. Nature 1989; 339: 721-4.
  • 49 Bottomley SP, Lawrenson ID, Tew D. et al. The role of strand 1 of the C beta-sheet in the structure and function of alpha(1)-antitrypsin. Protein Sci 2001; 10: 2518-24.
  • 50 Ibarra CA, Blouse GE, Christian TD. et al. The contribution of the exosite residues of plasminogen activator inhibitor-1 to proteinase inhibition. J Biol Chem 2004; 279: 3643-50.
  • 51 Sun J, Whisstock JC, Harriott P. et al. Importance of the P4 ‘ residue in human granzyme B inhibitors and substrates revealed by scanning mutagenesis of the proteinase inhibitor 9 reactive center loop. J Biol Chem 2001; 276: 15177-84.
  • 52 Lawrence DA, Ginsburg D, Day DE. et al. Serpin-protease complexes are trapped as stable acyl-enzyme intermediates. J Biol Chem 1995; 270: 25309-12.
  • 53 Huntington JA, Read RJ, Carrell RW. Structure of a serpin-protease complex shows inhibition by deformation. Nature 2000; 407: 923-6.
  • 54 Gils A, Knockaert I, Declerck PJ. Construction and characterization of plasminogen activator inhibitor-1 mutants in which part of the active site loop is deleted. Fibrinolysis 1997; 11: 265-71.
  • 55 Zhou A, Carrell RW, Huntington JA. The serpin inhibitory mechanism is critically dependent on the length of the reactive center loop. J Biol Chem 2001; 276: 27541-7.
  • 56 De Taeye B, Verbeke K, Compernolle G. et al. Structural determinants in the stability of the serpin/proteinase complex. Biochem Biophys Res Commun 2003; 307: 529-34.
  • 57 De Taeye B, Compernolle G, Declerck PJ. Site-directed targeting of plasminogen activator inhibitor-1 as an example for a novel approach in rational drug design. J Biol Chem 2004; 279: 20447-50.
  • 58 Naessens D, Gils A, Compernolle G. et al. Elucidation of a novel epitope of a substrateinducing monoclonal antibody against the serpin PAI-1. J Thromb Haemost 2003; 01: 1028-33.
  • 59 Komissarov AA, Declerck PJ, Shore JD. Mechanisms of Conversion of plasminogen activator inhibitor 1 from a suicide inhibitor to a substrate by monoclonal antibodies. J Biol Chem 2002; 277: 43858-65.
  • 60 Sui GC, Wiman B. The Bb-sheet in the PAI-1 molecule plays an important role for its stability. Thromb Haemost 2000; 83: 896901.
  • 61 Tucker HM, Mottonen J, Goldsmith EJ. et al. Engineering of plasminogen activator inhibitor-1 to reduce the rate of latency transition [letter]. Nat Struct Biol 1995; 02: 442-5.
  • 62 Bjorquist P, Ehnebom J, Inghardt T. et al. Identification of the binding site for a lowmolecular-weight inhibitor of plasminogen activator inhibitor type 1 by sitedirected mutagenesis. Biochemistry 1998; 37: 1227-34.
  • 63 Gils A, Vleugels N, Tobback K. et al. Characterization of plasminogen activator inhibitor 1 mutants containing the p13 to p10 region of ovalbumin or antithrombin iii: evidence that the p13 residue contributes significantly to the active to substrate transition. Biochim Biophys Acta 1998; 1387: 291-7.
  • 64 Lawrence DA, Olson ST, Muhammad S. et al. Partitioning of serpin-proteinase reactions between stable inhibition and substrate cleavage is regulated by the rate of serpin reactive center loop insertion into beta-sheet A. J Biol Chem 2000; 275: 5839-44.
  • 65 Devraj RKizuk, Chui DH, Prochownik EV. et al. Antithrombin-III-Hamilton: a gene with a point mutation (guanine to adenine) in codon 382 causing impaired serine protease reactivity. Blood 1988; 72: 1518-23.
  • 66 Perry DJ, Harper PL, Fairham S. et al. Antithrombin Cambridge, 384 Ala to Pro: a new variant identified using the polymerase chain reaction. FEBS Lett 1989; 254: 174-6.
  • 67 Stein PE, Leslie AG, Finch JT. et al. Crystal structure of ovalbumin as a model for the reactive centre of serpins. Nature 1990; 347: 99-102.
  • 68 Carrell RW, Evans DL, Stein PE. Mobile reactive centre of serpins and the control of thrombosis. Nature 1991; 353: 576-8.
  • 69 Stein P, Chothia C. Serpin tertiary structure transformation. J Mol Biol 1991; 221: 615-21.
  • 70 Skriver K, Wikoff WR, Patston PA. et al. Substrate properties of C1 inhibitor Ma (alanine 434——glutamic acid) Genetic and structural evidence suggesting that the P12region contains critical determinants of serine protease inhibitor/substrate status. J Biol Chem 1991; 266: 9216-21.
  • 71 Gils A, Knockaert I, Declerck PJ. Substrate behavior of plasminogen activator inhibitor-1 is not associated with a lack of insertion of the reactive site loop. Biochemistry 1996; 35: 7474-81.
  • 72 Lawrence DA, Olson ST, Palaniappan S. et al. Serpin reactive center loop mobility is required for inhibitor function but not for enzyme recognition. J Biol Chem 1994; 269: 27657-62.
  • 73 Patston PA, Gettins P, Beechem J. et al. Mechanism of serpin action: evidence that C1 inhibitor functions as a suicide substrate. Biochemistry 1991; 30: 8876-82.
  • 74 Stavridi ES, O’Malley K, Lukacs CM. et al. Structural change in alpha-chymotrypsin induced by complexation with alpha 1-antichymotrypsin as seen by enhanced sensitivity to proteolysis. Biochemistry 1996; 35: 10608-15.
  • 75 Schechter NM, Jordan LM, James AM. et al. Reaction of human chymase with reactive site variants of alpha 1antichymotrypsin odulation of inhibitor versus substrate properties. J Biol Chem 1993; 268: 23626-33.
  • 76 Olson ST. Heparin and ionic strengthdependent conversion of antithrombin III from an inhibitor to a substrate of alphathrombin. J Biol Chem 1985; 260: 10153-60.
  • 77 De Taeye B, Compernolle G, Dewilde M. et al. Immobilization of the distal hinge in the labile serpin plasminogen activator inhibitor 1: Identification of a transition state with distinct conformational and functional properties. J Biol Chem 2003; 278: 23899-905.
  • 78 Hagglof P, Bergstrom F, Wilczynska M. et al. The reactive-center loop of active PAI-1 is folded close to the protein core and can be partially inserted. J Mol Biol 2004; 335: 823-32.
  • 79 Olson ST, Swanson R, Day D. et al. Resolution of Michaelis complex, acylation, and conformational change steps in the reactions of the serpin, plasminogen activator inhibitor-1, with tissue plasminogen activator and trypsin. Biochemistry 2001; 40: 1174256.
  • 80 Lindahl TL, Sigurdardottir O, Wiman B. Stability of plasminogen activator inhibitor 1 (PAI-1). Thromb Haemost 1989; 62: 748-51.
  • 81 Sancho E, Tonge DW, Hockney RC. et al. Purification and characterization of active and stable recombinant plasminogen-activator inhibitor accumulated at high levels in Escherichia coli. Eur J Biochem 1994; 224: 125-34.
  • 82 Keijer J, Linders M, Ehrlich HJ. et al. Stabilization of plasminogen activator inhibitor 1 (PAI-1) activity by arginine: possible implications for the interaction of PAI-1 with vitronectin. Fibrinolysis 1990; 04: 153-9.
  • 83 Mangs H, Sui GC, Wiman B. PAI-1 stability: the role of histidine residues. FEBS Lett 2000; 475: 192-6.
  • 84 Kvassman JO, Lawrence DA, Shore JD. The acid stabilization of plasminogen activator inhibitor-1 depends on protonation of a single group that affects loop insertion into betasheet A. J Biol Chem 1995; 270: 27942-7.
  • 85 Sui GC, Mangs H, Wiman B. The role of His(143) for the pH-dependent stability of plasminogen activator inhibitor-1. Biochim Biophys Acta 1999; 1434: 58-63.
  • 86 Sui GC, Wiman B. Stability of plasminogen activator inhibitor-1: role of tyrosine221 . FEBS Lett 1998; 423: 319-23.
  • 87 Lawrence DA, Loskutoff DJ. Inactivation of plasminogen activator inhibitor by oxidants. Biochemistry 1986; 25: 6351-5.
  • 88 Strandberg L, Lawrence DA, Johansson LB. et al. The oxidative inactivation of plasminogen activator inhibitor type 1 results from a conformational change in the molecule and does not require the involvement of the P1’ methionine. J Biol Chem 1991; 266: 13852-8.
  • 89 Berkenpas MB, Lawrence DA, Ginsburg D. Molecular evolution of plasminogen activator inhibitor-1 functional stability. EMBO J 1995; 14: 2969-77.
  • 90 Vleugels N, Leys J, Knockaert I. et al. Effect of stabilizing versus destabilizing interactions on plasminogen activator inhibitor-1. Thromb Haemost 2000; 84: 871-5.
  • 91 Stoop AA, Eldering E, Dafforn TR. et al. Different structural requirements for plasminogen activator inhibitor 1 (PAI-1) during latency transition and proteinase inhibition as evidenced by phage-displayed hypermutated PAI-1 libraries. J Mol Biol 2001; 305: 773-83.
  • 92 Kruger P, Verheyden S, Declerck PJ. et al. Extending the capabilities of targeted molecular dynamics: simulation of a large conformational transition in plasminogen activator inhibitor 1. Protein Sci 2001; 10: 798-808.
  • 93 Shore JD, Day DE, Francis AMChmura. et al. A fluorescent probe study of plasminogen activator inhibitor-1 Evidence for reactive center loop insertion and its role in the inhibitory mechanism. J Biol Chem 1995; 270: 5395-8.
  • 94 Lawrence DA, Olson ST, Palaniappan S. et al. Engineering plasminogen activator inhibitor 1 mutants with increased functional stability. Biochemistry 1994; 33: 3643-8.
  • 95 Chorostowska-Wynimko J, Swiercz R, Skrzypczak-Jankun E. et al. A novel form of the plasminogen activator inhibitor created by cysteine mutations extends its half-life: relevance to cancer and angiogenesis. Mol Cancer Ther 2003; 02: 19-28.
  • 96 Hansen M, Busse MN, Andreasen PA. Importance of the amino-acid composition of the shutter region of plasminogen activator inhibitor-1 for its transitions to latent and substrate forms. Eur J Biochem 2001; 268: 6274-83.
  • 97 Kirkegaard T, Jensen S, Schousboe SL. et al. Engineering of conformations of plasminogen activator inhibitor-1 A crucial role of beta-strand 5A residues in the transition of active form to latent and substrate forms. Eur J Biochem 1999; 263: 577-86.
  • 98 Wind T, Jensen JK, Dupont DM. et al. Mutational analysis of plasminogen activator inhibitor-1. Eur J Biochem 2003; 270: 1680-8.
  • 99 Engh RA, Schulze AJ, Huber R. et al. Serpin structures. Behring Inst Mitt 1993; 41-62.
  • 100 Gils A, Lu J, Aertgeerts K. et al. Identification of positively charged residues contributing to the stability of plasminogen activator inhibitor 1. FEBS Lett 1997; 415: 192-5.
  • 101 Sui GC, Wiman B. Functional effects of single amino acid substitutions in the region of phe(113) to asp(138) in the plasminogen activator inhibitor 1 molecule. Biochem J 1998; 331: 409-15.
  • 102 Irving JA, Pike RN, Lesk AM. et al. Phylogeny of the serpin superfamily: implications of patterns of amino acid conservation for structure and function. Genome Res 2000; 10: 1845-64.
  • 103 Declerck PJ, De Mol M, Alessi MC. et al. Purification and characterization of a plasminogen activator inhibitor 1 binding protein from human plasma Identification as a multimeric form of S protein (vitronectin). J Biol Chem 1988; 263: 15454-61.
  • 104 Naski MC, Lawrence DA, Mosher DF. et al. Kinetics of inactivation of alpha-thrombin by plasminogen activator inhibitor-1 Comparison of the effects of native and urea-treated forms of vitronectin. J Biol Chem 1993; 268: 12367-72.
  • 105 Lawrence DA, Palaniappan S, Stefansson S. et al. Characterization of the binding of different conformational forms of plasminogen activator inhibitor 1 to vitronectin: implications for the regulation of pericellular proteolysis. J Biol Chem 1997; 272: 7676-80.
  • 106 Keijer J, Linders M, van Zonneveld AJ. et al. The interaction of plasminogen activator inhibitor 1 with plasminogen activators (tissue-type and urokinase-type) and fibrin: localization of interaction sites and physiologic relevance. Blood 1991; 78: 401-9.
  • 107 Ehrlich HJ, Gebbink RK, Keijer J. et al. Elucidation of structural requirements on plasminogen activator inhibitor 1 for binding to heparin. J Biol Chem 1992; 267: 11606-11.
  • 108 Fa M, Karolin J, Aleshkov S. et al. Timeresolved polarized fluorescence spectroscopy studies of plasminogen activator inhibitor type 1: conformational changes of the reactive center upon interactions with target proteases, vitronectin and heparin. Biochemistry 1995; 34: 13833-40.
  • 109 Gibson A, Baburaj K, Day DE. et al. The use of fluorescent probes to characterize conformational changes in the interaction between vitronectin and plasminogen activator inhibitor-1. J Biol Chem 1997; 272: 5112-21.
  • 110 Fa M, Bergstrom F, Karolin J. et al. Conformational studies of plasminogen activator inhibitor type 1 by fluorescence spectroscopy Analysis of the reactive centre of inhibitory and substrate forms, and their respective reactive-centre cleaved forms. Eur J Biochem 2000; 267: 3729-34.
  • 111 van Meijer M, Gebbink RK, Preissner KT. et al. Determination of the vitronectin binding site on plasminogen activator inhibitor 1 (PAI-1). FEBS Lett 1994; 352: 342-6.
  • 112 Padmanabhan J, Sane DC. Localization of a vitronectin binding region of plasminogen activator inhibitor-1. Thromb Haemost 1995; 73: 829-34.
  • 113 Lawrence DA, Berkenpas MB, Palaniappan S. et al. Localization of vitronectin binding domain in plasminogen activator inhibitor-1. J Biol Chem 1994; 269: 15223-8.
  • 114 Arroyo DP, Schroeck F, Sinner EK. et al. Interaction of plasminogen activator inhibitor type-1 (PAI-1) with vitronectin. Eur J Biochem 2002; 269: 184-92.
  • 115 Jensen JK, Wind T, Andreasen PA. The vitronectin binding area of plasminogen activator inhibitor-1, mapped by mutagenesis and protection against an inactivating organochemical ligand. FEBS Lett 2002; 521: 91-4.
  • 116 Jensen JK, Durand KV, Skeldal S. et al. Construction of a plasminogen activator inhibitor-1 variant without measurable affinity to vitronectin but otherwise normal. FEBS Lett 2004; 556: 175-9.
  • 117 Im H, Yu MH. Role of Lys335 in the metastability and function of inhibitory serpins. Protein Sci 2000; 09: 934-41.
  • 118 Zhou A, Huntington JA, Pannu NS. et al. How vitronectin binds PAI-1 to modulate fibrinolysis and cell migration. Nat Struct Biol 2003; 10: 541-4.
  • 119 Mayasundari A, Whittemore NA, Serpersu EH. et al. The solution structure of the Nterminal domain of human vitronectin. J Biol Chem 2004; 279: 29359-66.
  • 120 Kamikubo Y, De Guzman R, Kroon G. et al. Disulfide bonding arrangements in active forms of the somatomedin B domain of human vitronectin. Biochemistry 2004; 43: 6519-34.
  • 121 Ehrlich HJ, Keijer J, Preissner KT. et al. Functional interaction of plasminogen activator inhibitor type 1 (PAI1) and heparin. Biochemistry 1991; 30: 1021-8.
  • 122 Stringer HA, Pannekoek H. The significance of fibrin binding by plasminogen activator inhibitor 1 for the mechanism of tissue-type plasminogen activator-mediated fibrinolysis. J Biol Chem 1995; 270: 11205-8.
  • 123 Podor TJ, Peterson CB, Lawrence DA. et al. Type 1 plasminogen activator inhibitor binds to fibrin via vitronectin. J Biol Chem 2000; 275: 19788-94.
  • 124 Andreasen PA, Sottrup LJensen, Kjoller L. et al. Receptor-mediated endocytosis of plasminogen activators and activator/inhibitor complexes. FEBS Lett 1994; 338: 239-45.
  • 125 Andreasen PA, Kjoller L, Christensen L. et al. The urokinase type plasminogen activator system in cancer metastasis: a review. Int J Cancer 1997; 72: 1-22.
  • 126 Horn IR, van den Berg BM, van der Meijden PZ. et al. Molecular analysis of ligand binding to the second cluster of complementtype repeats of the low density lipoprotein receptorrelated protein Evidence for an allosteric component in receptorassociated protein-mediated inhibition of ligand binding. J Biol Chem 1997; 272: 13608-13.
  • 127 Nykjaer A, Petersen CM, Moller B. et al. Purified alpha 2-macroglobulin receptor/LDL receptor-related protein binds urokinase plasminogen activator inhibitor type-1 complex Evidence that the alpha 2macroglobulin receptor mediates cellular degradation of urokinase receptor-bound complexes. J Biol Chem 1992; 267: 14543-6.
  • 128 Nykjaer A, Kjoller L, Cohen RL. et al. Regions involved in binding of urokinasetype-1 inhibitor complex and pro-urokinase to the endocytic alpha 2-macroglobulin receptor/low density lipoprotein receptorrelated protein Evidence that the urokinase receptor protects pro-urokinase against binding to the endocytic receptor. J Biol Chem 1994; 269: 25668-76.
  • 129 Rodenburg KW, Kjoller L, Petersen HH. et al. Binding of urokinase-type plasminogen activator plasminogen activator inhibitor-1 complex to the endocytosis receptors alpha(2)-macroglobulin receptor low-density lipoprotein receptorrelated protein and verylow-density lipoprotein receptor involves basic residues in the inhibitor. Biocheml J 1998; 329: 55-63.
  • 130 Horn IR, van den Berg BM, Moestrup SK. et al. Plasminogen activator inhibitor 1 contains a cryptic high affinity receptor binding site that is exposed upon complex formation with tissue-type plasminogen activator. Thromb Haemost 1998; 80: 822-8.
  • 131 Stefansson S, Muhammad S, Cheng XF. et al. Plasminogen activator inhibitor-1 contains a cryptic high affinity binding site for the low density lipoprotein receptorrelated protein. J Biol Chem 1998; 273: 6358-66.
  • 132 Gils A, Pedersen KE, Skottrup P. et al. Biochemical importance of glycosylation of plasminogen activator inhibitor-1. Thromb Haemost 2003; 90: 206-17.
  • 133 Lawrence D, Strandberg L, Grundstrom T. et al. Purification of active human plasminogen activator inhibitor 1 from Escherichia coli Comparison with natural and recombinant forms purified from eucaryotic cells. Eur J Biochem 1989; 186: 523-33.
  • 134 Gils A, Knockaert I, Brouwers E. et al. Glycosylation dependent conformational transitions in plasminogen activator inhibitor-1: evidence for the presence of two active conformations. Fibrinolysis 2000; 14: 58-64.
  • 135 Andreasen PA, Egelund R, Jensen S. et al. Solvent effects on activity and conformation of plasminogen activator inhibitor-1. Thromb Haemost 1999; 81: 407-14.
  • 136 Lomas DA, Carrell RW. Serpinopathies and the conformational dementias. Nature Reviews Genetics 2002; 03: 759-68.
  • 137 Jin L, Abrahams JP, Skinner R. et al. The anticoagulant activation of antithrombin by heparin. Proc Natl Acad Sci USA 1997; 94: 14683-8.
  • 138 Schreuder HA, de Boer B, Dijkema R. et al. The intact and cleaved human antithrombin III complex as a model for serpinproteinase interactions. Nat Struct Biol 1994; 01: 48-54.
  • 139 Stout TJ, Graham H, Buckley DI. et al. Structures of active and latent PAI-1: a possible stabilizing role for chloride ions. Biochemistry 2000; 39: 8460-9.
  • 140 Lomas DA, Evans DL, Finch JT. et al. The mechanism of Z alpha 1-antitrypsin accumulation in the liver. Nature 1992; 357: 605-7.
  • 141 Egelund R, Einholm AP, Pedersen KE. et al. A regulatory hydrophobic area in the flexible joint region of plasminogen activator inhibitor-1, defined with fluorescent activityneutralizing ligands - Ligand-induced serpin polymerization. J Biol Chem 2001; 276: 13077-86.
  • 142 Pedersen KE, Einholm AP, Christensen A. et al. Plasminogen activator inhibitor-1 polymers, induced by inactivating amphipathic organochemical ligands. Biochem J 2003; 372: 747-55.
  • 143 Zhou A, Faint R, Charlton P. et al. Polymerization of plasminogen activator inhibitor-1. J Biol Chem 2001; 276: 9115-22.
  • 144 Blouse GE, Perron MJ, Thompson JH. et al. A concerted structural transition in the plasminogen activator inhibitor-1 mechanism of inhibition. Biochemistry 2002; 41: 11997-2009.
  • 145 Verheyden S, Sillen A, Gils A. et al. Tryptophan properties in fluorescence and functional stability of plasminogen activator inhibitor 1. Biophys J 2003; 85: 501-10.
  • 146 Abbott GL, Blouse GE, Perron MJ. et al. 19F NMR studies of plasminogen activator inhibitor-1. Biochemistry 2004; 43: 1507-19.
  • 147 Verhamme I, Kvassman JO, Day DE. et al. Accelerated conversion of human plasminogen activator inhibitor-1 to its latent form by antibody binding. J Biol Chem 1999; 274: 17511-17.
  • 148 Karolin J, Fa M, Wilczynska M. et al. Donordonor energy migration for determining intramolecular distances in proteins: I Application of a model to the latent plasminogen activator inhibitor-1 (PAI-1). Biophys J 1998; 74: 11-21.
  • 149 Fa M, Bergstrom F, Hagglof P. et al. The structure of a serpin-protease complex revealed by intramolecular distance measurements using donor-donor energy migration and mapping of interaction sites. Structure 2000; 08: 397-405.
  • 150 Aertgeerts K, De Bondt HL, De Ranter C. et al. Crystallization and X-ray diffraction data of the cleaved form of plasminogen activator inhibitor-1. Proteins 1995; 23: 118-21.
  • 151 Wilczynska M, Fa M, Karolin J. et al. Structural insights into serpin protease complexes reveal the inhibitory mechanism of serpins. Nat Struct Biol 1997; 04: 354-7.
  • 152 Aleshkov SB, Fa M, Karolin J. et al. Biochemical and biophysical studies of reactive center cleaved plasminogen activator inhibitor type 1 The distance between P3 and P1’ determined by donor-donor fluorescence energy transfer. J Biol Chem 1996; 271: 21231-8.
  • 153 Strandberg L, Karolin J, Johansson LB. et al. Fluorescence studies on plasminogen activator inhibitor 1: reactive centre cysteine mutants remain active after fluorophore attachment. Thromb Res 1994; 76: 253-67.
  • 154 Backovic M, Stratikos E, Lawrence DA. et al. Structural similarity of the covalent complexes formed between the serpin plasminogen activator inhibitor-1 and the arginine-specific proteinases trypsin, LMW u-PA, HMW u-PA, and t-PA: use of site-specific fluorescent probes of local environment. Protein Sci 2002; 11: 1182-91.
  • 155 Bjorquist P, Ehnebom J, Inghardt T. et al. Epitopes on plasminogen activator inhibitor type 1 important for binding to tissue plasminogen activator. Biochim Biophys Acta 1997; 1341: 87-98.
  • 156 van Zonneveld AJ, van den Berg BM, van Meijer M. et al. Identification of functional interaction sites on proteins using bacteriophage-displayed random epitope libraries. Gene 1995; 167: 49-52.
  • 157 Einholm AP, Pedersen KE, Wind T. et al. Biochemical mechanism of action of a diketopiperazine inactivator of plasminogen activator inhibitor-1. Biochem J 2003; 373: 723-32.
  • 158 Bijnens AP, Gils A, Stassen JM. et al. The distal hinge of the reactive site loop and its proximity: a target to modulate plasminogen activator inhibitor-1 activity. J Biol Chem 2001; 276: 44912-8.
  • 159 Bijnens AP, Gils A, Knockaert I. et al. Importance of the hinge region between α-helix F and the main part of serpins, based upon identification of the epitope of plasminogen activator inhibitor type 1 neutralizing antibodies. J Biol Chem 2000; 275: 6375-80.
  • 160 Bijnens AP, Ngo TH, Gils A. et al. Elucidation of the binding regions of PAI-1 neutralizing antibodies using chimeric variants of human and rat PAI-1. Thromb Haemost 2001; 85: 866-74.
  • 161 Bodker JS, Wind T, Jensen JK. et al. Mapping of the epitope of a monoclonal antibody protecting plasminogen activator inhibitor-1 against inactivating agents. Eur J Biochem 2003; 270: 1672-9.
  • 162 Muehlenweg B, Guthaus E, de Prada NA. et al. Epitope mapping of monoclonal antibodies directed to PAI-1 using PAI-1/ PAI-2 chimera and PAI-1-derived synthetic peptides. Thromb Res 2000; 98: 73-81.
  • 163 Stoop AA, Jespers L, Lasters I. et al. Highdensity mutagenesis by combined DMA shuffling and phage display to assign essential amino acid residues in protein-protein interactions: Application to study structure-function of plasminogen activation inhibitor 1 (PAI-I). J Mol Biol 2000; 301: 1135-47.
  • 164 Wind T, Jensen MA, Andreasen PA. Epitope mapping for four monoclonal antibodies against human plasminogen activator inhibitor type-1 Implications for antibody-mediated PAI-1-neutralization and vitronectin-binding. Eur J Biochem 2001; 268: 1095-106.
  • 165 Naessens D, Gils A, Compernolle G. et al. Elucidation of the epitope of a latency-inducing antibody: identification of a new molecular target for PAI-1 inhibition. Thromb Haemost 2003; 90: 52-8.
  • 166 Gorlatova NV, Elokdah H, Fan K. et al. Mapping of a conformational epitope on plasminogen activator inhibitor-1 by random mutagenesis Implications for serpin function. J Biol Chem 2003; 278: 16329-35.
  • 167 Johnson DJ, Huntington JA. Crystal structure of antithrombin in a heparin-bound intermediate state. Biochemistry 2003; 42: 8712-19.
  • 168 Vleugels N, Gils A, Bijnens AP. et al. The importance of helix F in plasminogen activator inhibitor-1. Biochim Biophys Acta 2000; 1476: 20-26.
  • 169 Vleugels N, Gils A, Mannaerts S. et al. Evaluation of the mechanism of inactivation of plasminogen activator inhibitor-1 by monoclonal antibodies using a stable variant. Fibrinolysis 1998; 12: 277-82.
  • 170 York JD, Li P, Gardell SJ. Combinatorial mutagenesis of the reactive site region in plasminogen activator inhibitor I. J Biol Chem 1991; 266: 8495-500.