Thromb Haemost 2005; 93(02): 319-325
DOI: 10.1160/TH04-09-0582
Platelets and Blood Cells
Schattauer GmbH

The NO/cGMP pathway inhibits Rap1 activation in human platelets via cGMP-dependent protein kinase I

Oliver Danielewski
1   Institute for Biochemistry II, University of Frankfurt Medical School, Frankfurt/Main, Germany
,
Jan Schultess
1   Institute for Biochemistry II, University of Frankfurt Medical School, Frankfurt/Main, Germany
,
Albert Smolenski
1   Institute for Biochemistry II, University of Frankfurt Medical School, Frankfurt/Main, Germany
› Author Affiliations
Further Information

Publication History

Received 10 September 2004

Accepted after revision 25 January 2004

Publication Date:
11 December 2017 (online)

Summary

The NO/cGMP signalling pathway strongly inhibits agonist-induced platelet aggregation. However, the molecular mechanisms involved are not completely defined. We have studied NO/cGMP effects on the activity of Rap1, an abundant guanine-nucleotidebinding protein in platelets. Rap1-GTP levels were reduced by NO-donors and activators of NO-sensitive soluble guanylyl cyclase. Four lines of evidence suggest that NO/cGMP effects are mediated by cGMP-dependent protein kinase (cGKI): (i) Rap1 inhibition correlated with cGKI activity as measured by the phosphorylation state ofVASP, an established substrate of cGKI, (ii) 8-pCPT-cGMP, a membrane permeable cGMP-analog and activator of cGKI, completely blocked Rap1 activation, (iii) Rp- 8pCPT-cGMPS, a cGKI inhibitor, reversed NO effects and (iv) expression of cGKI in cGKI-deficient megakaryocytes inhibited Rap1 activation. NO/cGMP/cGKI effects were independent of the type of stimulus used for Rap1 activation. Thrombin-,ADPand collagen-induced formation of Rap1-GTP in platelets as well as turbulence-induced Rap1 activation in megakaryocytes were inhibited. Furthermore, cGKI inhibited ADP-induced Rap1 activation induced by the G α i -coupled P2Y12 receptor alone, i.e. independently of effects on Ca2+-signalling. From these studies we conclude that NO/cGMP inhibit Rap1 activation in human platelets and that this effect is mediated by cGKI. Since Rap1 controls the function of integrin α IIbβ 3 , we propose that Rap1 inhibition might play a central role in the anti-aggregatory actions of NO/cGMP.

 
  • References

  • 1 Pareti FI, Carrera D, Mannucci L. et al Effect on platelet functions of derivatives of cyclic nucleotides.. Thromb Haemost 1978; 39: 404-10.
  • 2 Radomski MW, Palmer RM, Moncada S. An L-arginine/ nitric oxide pathway present in human platelets regulates aggregation.. Proc Natl Acad Sci U S A 1990; 87: 5193-7.
  • 3 Wallerath T, Gath I, Aulitzky WE. et al Identification of the NO synthase isoforms expressed in human neutrophil granulocytes, megakaryocytes and platelets.. Thromb Haemost 1997; 77: 163-7.
  • 4 Friebe A, Müllershausen F, Smolenski A. et al YC-1 potentiates nitric oxide- and carbon monoxideinduced cyclic GMP effects in human platelets.. Mol Pharmacol 1998; 54: 962-7.
  • 5 Feil R, Lohmann SM, de Jonge H. et al Cyclic GMP-dependent protein kinases and the cardiovascular system: insights from genetically modified mice.. Circ Res 2003; 93: 907-16.
  • 6 Münzel T, Feil R, Mülsch A. et al Physiology and pathophysiology of vascular signaling controlled by guanosine 3',5'-cyclic monophosphate-dependent protein kinase [corrected].. Circulation 2003; 108: 2172-83.
  • 7 Eigenthaler M, Ullrich H, Geiger J. et al Defective nitrovasodilator-stimulated protein phosphorylation and calcium regulation in cGMP-dependent protein kinase- deficient human platelets of chronic myelocytic leukemia.. J Biol Chem 1993; 268: 13526-31.
  • 8 Massberg S, Sausbier M, Klatt P. et al Increased adhesion and aggregation of platelets lacking cyclic guanosine 3',5'-monophosphate kinase I.. J Exp Med 1999; 189: 1255-64.
  • 9 Bos JL, de Bruyn K, Enserink J. et al The role of Rap1 in integrin-mediated cell adhesion.. Biochem Soc Trans 2003; 31: 83-6.
  • 10 Hattori M, Minato N. Rap1 GTPase: functions, regulation, and malignancy.. J Biochem (Tokyo) 2003; 134: 479-84.
  • 11 Kinbara K, Goldfinger LE, Hansen M. et al Ras GTPases: integrins' friends or foes?. Nat Rev Mol Cell Biol 2003; 4: 767-76.
  • 12 Stork PJ. Does Rap1 deserve a bad Rap?. Trends Biochem Sci 2003; 28: 267-75.
  • 13 Siess W, Winegar DA, Lapetina EG. Rap1-B is phosphorylated by protein kinase A in intact human platelets.. Biochem Biophys Res Commun 1990; 170: 944-50.
  • 14 Klinz FJ, Seifert R, Schwaner I. et al Generation of specific antibodies against the rap1A, rap1B and rap2 small GTP-binding proteins. Analysis of rap and ras proteins in membranes from mammalian cells.. Eur J Biochem 1992; 207: 207-13.
  • 15 Torti M, Lapetina EG. Structure and function of rap proteins in human platelets.. Thromb Haemost 1994; 71: 533-43.
  • 16 Bertoni A, Tadokoro S, Eto K. et al Relationships between Rap1b, affinity modulation of integrin alpha IIbbeta 3, and the actin cytoskeleton.. J Biol Chem 2002; 277: 25715-21.
  • 17 de Bruyn KM, Zwartkruis FJ, de Rooij J. et al The small GTPase Rap1 is activated by turbulence and is involved in integrin [alpha]IIb[beta]3-mediated cell adhesion in human megakaryocytes.. J Biol Chem 2003; 278: 22412-7.
  • 18 Crittenden JR, Bergmeier W, Zhang Y. et al Cal- DAG-GEFI integrates signaling for platelet aggregation and thrombus formation.. Nat Med 2004; 10: 982-6.
  • 19 Franke B, Akkerman JW, Bos JL. Rapid Ca2+-mediated activation of Rap1 in human platelets.. Embo J 1997; 16: 252-9.
  • 20 Franke B, van Triest M, de Bruijn KM. et al Sequential regulation of the small GTPase Rap1 in human platelets.. Mol Cell Biol 2000; 20: 779-85.
  • 21 Lova P, Paganini S, Sinigaglia F. et al A Gi-dependent pathway is required for activation of the small GTPase Rap1B in human platelets.. J Biol Chem 2002; 277: 12009-15.
  • 22 Woulfe D, Jiang H, Mortensen R. et al Activation of Rap1B by G(i) family members in platelets.. J Biol Chem 2002; 277: 23382-90.
  • 23 Larson MK, Chen H, Kahn ML. et al Identification of P2Y12-dependent and -independent mechanisms of glycoprotein VI-mediated Rap1 activation in platelets.. Blood 2003; 101: 1409-15.
  • 24 Lova P, Paganini S, Hirsch E. et al A selective role for phosphatidylinositol 3,4,5-trisphosphate in the Gidependent activation of platelet Rap1B.. J Biol Chem 2003; 278: 131-8.
  • 25 Kawata M, Kikuchi A, Hoshijima M. et al Phosphorylation of smg p21, a ras p21-like GTP-binding protein, by cyclic AMP-dependent protein kinase in a cell-free system and in response to prostaglandin E1 in intact human platelets.. J Biol Chem 1989; 264: 15688-95.
  • 26 Miura Y, Kaibuchi K, Itoh T. et al Phosphorylation of smg p21B/rap1B p21 by cyclic GMP-dependent protein kinase.. FEBS Lett 1992; 297: 171-4.
  • 27 Grunberg B, Kruse HJ, Negrescu EV. et al Platelet rap1B phosphorylation is a sensitive marker for the action of cyclic AMP- and cyclic GMP-increasing platelet inhibitors and vasodilators.. J Cardiovasc Pharmacol 1995; 25: 545-51.
  • 28 Smolenski A, Bachmann C, Reinhard K. et al Analysis and regulation of vasodilator-stimulated phosphoprotein serine 239 phosphorylation in vitro and in intact cells using a phosphospecific monoclonal antibody.. J Biol Chem 1998; 273: 20029-35.
  • 29 Smolenski A, Poller W, Walter U. et al Regulation of human endothelial cell focal adhesion sites and migration by cGMP-dependent protein kinase I.. J Biol Chem 2000; 275: 25723-32.
  • 30 Feelisch M. The use of nitric oxide donors in pharmacological studies.. Naunyn Schmiedebergs Arch Pharmacol 1998; 358: 113-22.
  • 31 Moro MA, Russel RJ, Cellek S. et al cGMP mediates the vascular and platelet actions of nitric oxide: confirmation using an inhibitor of the soluble guanylyl cyclase.. Proc Natl Acad Sci U S A 1996; 93: 1480-5.
  • 32 Schwarz UR, Walter U, Eigenthaler M. Taming platelets with cyclic nucleotides.. Biochem Pharmacol 2001; 62: 1153-61.
  • 33 Gachet C. ADP receptors of platelets and their inhibition.. Thromb Haemost 2001; 86: 222-32.
  • 34 Baurand A, Raboisson P, Freund M. et al Inhibition of platelet function by administration of MRS2179, a P2Y1 receptor antagonist.. Eur J Pharmacol 2001; 412: 213-21.
  • 35 Freedman JE, Sauter R, Battinelli EM. et al Deficient platelet-derived nitric oxide and enhanced hemostasis in mice lacking the NOSIII gene.. Circ Res 1999; 84: 1416-21.
  • 36 Chiang TM, Woo-Rasberry V, Cole F. Role of platelet endothelial form of nitric oxide synthase in collagen- platelet interaction: regulation by phosphorylation.. Biochim Biophys Acta 2002; 1592: 169-74.
  • 37 Fleming I, Schulz C, Fichtlscherer B. et al AMPactivated protein kinase (AMPK) regulates the insulininduced activation of the nitric oxide synthase in human platelets.. Thromb Haemost 2003; 90: 863-71.
  • 38 Li Z, Xi X, Gu M. et al A stimulatory role for cGMP-dependent protein kinase in platelet activation.. Cell 2003; 112: 77-86.
  • 39 Li Z, Ajdic J, Eigenthaler M. et al A predominant role for cAMP-dependent protein kinase in the cGMPinduced phosphorylation of vasodilator-stimulated phosphoprotein and platelet inhibition in humans.. Blood 2003; 101: 4423-9.
  • 40 Gambaryan S, Geiger J, Schwarz UR. et al Potent inhibition of human platelets by cGMP analogs independent of cGMP-dependent protein kinase.. Blood 2004; 103: 2593-600.
  • 41 Marshall SJ, Senis YA, Auger JM. et al GPIb-dependent platelet activation is dependent on Src kinases but not MAP kinase or cGMP-dependent kinase.. Blood 2004; 103: 2601-9.
  • 42 Hardy AR, Jones ML, Mundell SJ. et al Reciprocal cross-talk between P2Y1 and P2Y12 receptors at the level of calcium signaling in human platelets.. Blood 2004; 104: 1745-52.
  • 43 Aktas B, Honig-Liedl P, Walter U. et al Inhibition of platelet P2Y12 and alpha2A receptor signaling by cGMP-dependent protein kinase.. Biochem Pharmacol 2002; 64: 433-9.
  • 44 Siess W, Grunberg B. Phosphorylation of rap1B by protein kinase A is not involved in platelet inhibition by cyclic AMP.. Cell Signal 1993; 5: 209-14.
  • 45 Massberg S, Gruner S, Konrad I. et al Enhanced in vivo platelet adhesion in vasodilator-stimulated phosphoprotein (VASP)-deficient mice.. Blood 2004; 103: 136-42.
  • 46 Aszodi A, Pfeifer A, Ahmad M. et al The vasodilator- stimulated phosphoprotein (VASP) is involved in cGMP- and cAMP-mediated inhibition of agonist-induced platelet aggregation, but is dispensable for smooth muscle function.. Embo J 1999; 18: 37-48.
  • 47 Hauser W, Knobeloch KP, Eigenthaler M. et al Megakaryocyte hyperplasia and enhanced agonist-induced platelet activation in vasodilator-stimulated phosphoprotein knockout mice.. Proc Natl Acad Sci U S A 1999; 96: 8120-5.
  • 48 Lafuente EM, van Puijenbroek AA, Krause M. et al RIAM, an Ena/VASP and Profilin ligand, interacts with Rap1-GTP and mediates Rap1-induced adhesion.. Dev Cell 2004; 7: 585-95.
  • 49 Müllershausen F, Friebe A, Feil R. et al Direct activation of PDE5 by cGMP: long-term effects within NO/cGMP signaling.. J Cell Biol 2003; 160: 719-27.
  • 50 Butt E, Gambaryan S, Gottfert N. et al Actin binding of human LIM and SH3 protein is regulated by cGMP- and cAMP-dependent protein kinase phosphorylation on serine 146.. J Biol Chem 2003; 278: 15601-7.
  • 51 Butt E, Immler D, Meyer HE. et al Heat shock protein 27 is a substrate of cGMP-dependent protein kinase in intact human platelets: phosphorylation-induced actin polymerization caused by HSP27 mutants.. J Biol Chem 2001; 276: 7108-13.